3 个月前

基于通用学习目标的多领域泛化再思考

基于通用学习目标的多领域泛化再思考

摘要

多领域泛化(multi-domain generalization, mDG)的普遍目标是缩小训练分布与测试分布之间的差异,从而提升边缘分布到标签分布的映射能力。然而,现有的mDG研究缺乏统一的学习目标范式,且通常对静态的目标边缘分布施加严格约束。本文提出引入一种$Y$-映射($Y$-mapping)以放宽此类约束。我们重新审视mDG的学习目标,设计了一种新的通用学习目标,用以解释和分析现有大部分mDG方法的核心思想。该通用目标被分解为两个协同作用的子目标:学习领域无关的条件特征,以及最大化后验概率。此外,我们进一步探索了两种有效的正则化项,分别用于融入先验信息并抑制无效因果关系,从而缓解因约束放松而可能引发的问题。理论上,我们推导出领域无关条件特征的领域对齐性的上界,揭示出以往多数mDG方法实际上仅部分优化了该目标,因而导致性能受限。基于此,本研究将通用学习目标提炼为四个实用组件,构建了一个通用、稳健且灵活的机制,以应对复杂的领域偏移问题。大量实验结果表明,结合$Y$-映射的所提目标在多种下游任务中均显著提升了mDG性能,涵盖回归、分割与分类等任务。

代码仓库

zhaorui-tan/gmdg
官方
pytorch
GitHub 中提及
zhaorui-tan/GMDG_cvpr2024
官方
pytorch
GitHub 中提及

基准测试

基准方法指标
domain-generalization-on-domainnetGMDG (RegNetY-16GF, SWAD)
Average Accuracy: 61.3
domain-generalization-on-domainnetGMDG (RegNetY-16GF)
Average Accuracy: 54.6
domain-generalization-on-domainnetGMDG (ResNet-50, SWAD)
Average Accuracy: 47.3
domain-generalization-on-domainnetGMDG (ResNet-50)
Average Accuracy: 44.6
domain-generalization-on-office-homeGMDG (ResNet-50, SWAD)
Average Accuracy: 72.5
domain-generalization-on-office-homeGMDG (ResNet-50)
Average Accuracy: 70.7
domain-generalization-on-office-homeGMDG (RegNetY-16GF)
Average Accuracy: 80.8
domain-generalization-on-office-homeGMDG (RegNetY-16GF, SWAD)
Average Accuracy: 84.7
domain-generalization-on-pacs-2GMDG (RegNetY-16GF, SWAD)
Average Accuracy: 97.9
domain-generalization-on-pacs-2GMDG (ResNet-50, SWAD)
Average Accuracy: 88.4
domain-generalization-on-pacs-2GMDG (e RegNetY-16GF)
Average Accuracy: 97.3
domain-generalization-on-pacs-2GMDG (ResNet-50)
Average Accuracy: 85.6
domain-generalization-on-terraincognitaGMDG (ResNet-50)
Average Accuracy: 51.1
domain-generalization-on-terraincognitaGMDG (RegNetY-16GF, SWAD)
Average Accuracy: 65
domain-generalization-on-terraincognitaGMDG (RegNetY-16GF)
Average Accuracy: 60.7
domain-generalization-on-terraincognitaGMDG (ResNet-50, SWAD)
Average Accuracy: 53.0
domain-generalization-on-vlcsGMDG (ResNet-50)
Average Accuracy: 79.2
domain-generalization-on-vlcsGMDG (RegNetY-16GF)
Average Accuracy: 82.4
domain-generalization-on-vlcsGMDG (ResNet-50, SWAD)
Average Accuracy: 79.6
domain-generalization-on-vlcsGMDG (RegNetY-16GF, SWAD)
Average Accuracy: 82.2

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
基于通用学习目标的多领域泛化再思考 | 论文 | HyperAI超神经