
摘要
得益于深度学习技术的发展,基于深度学习的算法通过自动特征提取在变化检测(Change Detection, CD)任务中取得了显著性能。然而,现有基于深度学习的CD方法的性能受到变化像素与未变化像素之间严重不平衡的制约。为此,本文提出一种无需引入额外变化信息的渐进式前景平衡采样策略,旨在帮助模型在训练初期更准确地学习变化像素的特征,从而提升检测性能。此外,本文设计了一种判别性孪生网络——分层注意力网络(Hierarchical Attention Network, HANet),该网络能够融合多尺度特征并精细化提取细节特征。HANet的核心结构为HAN模块,其是一种轻量且高效的自注意力机制。在两个标签极度不平衡的CD数据集上进行的大量实验与消融研究充分验证了所提方法的有效性与高效性。
代码仓库
chengxihan/hanet-cd
官方
pytorch
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| change-detection-on-cdd-dataset-season-1 | HANet | F1: 89.23 F1-Score: 89.23 IoU: 90.55 KC: 87.70 Overall Accuracy: 97.32 Precision: 92.86 Recall: 85.87 |
| change-detection-on-dsifn-cd | HANet | F1: 62.67 IoU: 45.64 KC: 54.01 Overall Accuracy: 85.76 Precision: 56.52 Recall: 70.33 |
| change-detection-on-googlegz-cd | HANet | F1: 75.28 IoU: 60.36 KC: 67.67 Overal Accuracy: 88.34 Precision: 78.58 Recall: 72.25 |
| change-detection-on-levir | HANet | F1: 77.56 IoU: 63.34 KC: 76.63 OA: 98.22 Prcision: 79.70 Recall: 75.53 |
| change-detection-on-levir-cd | HANet | F1: 90.28 F1-score: 90.28 IoU: 82.27 Overall Accuracy: 99.02 Precision: 91.21 Recall: 89.36 |
| change-detection-on-s2looking | HANet | F1: 58.54 F1-Score: 58.54 IoU: 41.38 KC: 58.05 OA: 99.04 Precision: 61.38 Recall: 55.94 |
| change-detection-on-sysu-cd | HANet | F1: 77.41 IoU: 63.14 KC: 70.59 OA: 89.52 Precision: 78.71 Recall: 76.14 |
| change-detection-on-whu-cd | HANet | F1: 88.16 IoU: 78.82 KC: 87.72 Overall Accuracy: 99.16 Precision: 88.30 Recall: 88.01 |