
摘要
行人重识别(Person Re-identification, Re-ID)是一项具有挑战性的任务,旨在监控系统中跨不同摄像头视角识别同一行人。现有方法通常依赖于单摄像头视角的特征表示,在面对多摄像头场景以及视角变化、遮挡等挑战时,其性能往往受限。本文提出一种新方法,通过引入不确定特征融合方法(Uncertain Feature Fusion Method, UFFM)与自动加权度量组合机制(Auto-weighted Measure Combination, AMC),显著提升了Re-ID模型的性能。UFFM通过独立提取多张图像的特征,并融合生成多视角特征,有效缓解了视角偏差问题。然而,仅依赖多视角特征之间的相似性度量存在局限性,因为这类特征忽略了单视角特征中所蕴含的细节信息。为此,本文进一步提出AMC方法,通过融合多种相似性度量方式,构建更加鲁棒的综合相似性评估机制。在多个行人重识别数据集上的实验结果表明,所提方法显著提升了Rank@1准确率与平均精度均值(Mean Average Precision, mAP)。结合BoT基准模型,在具有挑战性的MSMT17数据集上,Rank@1提升达7.9%,mAP提升12.1%;在Occluded-DukeMTMC数据集上,Rank@1提升22.0%,mAP提升18.4%。实验结果充分验证了所提方法的有效性与优越性。代码已公开,访问地址:https://github.com/chequanghuy/Enhancing-Person-Re-Identification-via-UFFM-and-AMC
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| person-re-identification-on-dukemtmc-reid | CLIP-ReID Baseline+UFFM+AMC | Rank-1: 91.3 mAP: 85.0 |
| person-re-identification-on-market-1501 | CLIP-ReID Baseline +UFFM+AMC | Rank-1: 96.1 mAP: 92.0 |
| person-re-identification-on-market-1501 | BoT+UFFM+AMC | Rank-1: 96.2 mAP: 91.0 |
| person-re-identification-on-market-1501 | SOLIDER +UFFM+AMC | Rank-1: 97 mAP: 94.9 |
| person-re-identification-on-msmt17 | BoT+UFFM+AMC | Rank-1: 82.0 mAP: 62.3 |
| person-re-identification-on-msmt17 | CLIP-ReID Baseline + UFFM +AMC | Rank-1: 83.8 mAP: 67.6 |
| person-re-identification-on-occluded-dukemtmc | BoT+UFFM+AMC | Rank-1: 70.6 mAP: 61.0 |
| person-re-identification-on-occluded-dukemtmc | CLIPReID-Baseline+UFFM+AMC | Rank-1: 68.9 mAP: 61.9 |