4 个月前

BoQ:一个地方的价值相当于一袋可学习的查询

BoQ:一个地方的价值相当于一袋可学习的查询

摘要

在视觉位置识别中,准确识别和匹配不同环境条件和视角下的位置图像仍然是一个重大挑战。本文介绍了一种新的技术,称为查询包(Bag-of-Queries, BoQ),该技术学习一组全局查询,旨在捕捉普遍的位置特定属性。与现有方法通过自注意力机制直接从输入特征生成查询不同,BoQ 使用独立可学习的全局查询,通过交叉注意力机制对输入特征进行探测,确保一致的信息聚合。此外,我们的技术提供了一个可解释的注意力机制,并且可以与卷积神经网络(CNN)和视觉变换器(Vision Transformer)主干网络集成。BoQ 的性能通过在14个大规模基准数据集上的广泛实验得到了验证。它始终优于当前最先进的技术,包括 NetVLAD、MixVPR 和 EigenPlaces。此外,作为全局检索技术(单阶段),BoQ 在速度和效率上比两阶段检索方法(如 Patch-NetVLAD、TransVPR 和 R2Former)高出几个数量级。代码和模型权重已公开发布在 https://github.com/amaralibey/Bag-of-Queries。

代码仓库

amaralibey/bag-of-queries
官方
pytorch
GitHub 中提及

基准测试

基准方法指标
visual-place-recognition-on-amstertimeBoQ (ResNet-50)
Recall@1: 52.2
visual-place-recognition-on-amstertimeBoQ
Recall@1: 63.0
Recall@10: 85.1
Recall@5: 81.6
visual-place-recognition-on-eynshamBoQ
Recall@1: 92.2
Recall@10: 96.4
Recall@5: 95.6
visual-place-recognition-on-eynshamBoQ (ResNet-50)
Recall@1: 91.3
visual-place-recognition-on-mapillary-testBoQ
Recall@1: 79
Recall@10: 92
Recall@5: 90.3
visual-place-recognition-on-mapillary-valBoQ
Recall@1: 93.8
Recall@10: 97
Recall@5: 96.8
visual-place-recognition-on-mapillary-valBoQ (ResNet-50)
Recall@1: 91.2
Recall@10: 96.1
Recall@5: 95.3
visual-place-recognition-on-nordlandBoQ
Recall@1: 90.6
Recall@10: 97.5
Recall@5: 96.0
visual-place-recognition-on-nordlandBoQ (ResNet-50)
Recall@1: 83.1
visual-place-recognition-on-pittsburgh-250kBoQ
Recall@1: 96.6
Recall@10: 99.5
Recall@5: 99.1
visual-place-recognition-on-pittsburgh-250kBoQ (ResNet-50)
Recall@1: 95
Recall@10: 99.1
Recall@5: 98.5
visual-place-recognition-on-pittsburgh-30kBoQ
Recall@1: 93.7
Recall@10: 97.9
Recall@5: 97.1
visual-place-recognition-on-pittsburgh-30kBoQ (ResNet-50)
Recall@1: 92.4
visual-place-recognition-on-san-franciscoBoQ
Recall@1: 93.6
Recall@10: 96.5
Recall@5: 95.8
visual-place-recognition-on-spedBoQ
Recall@1: 92.5
Recall@10: 96.7
Recall@5: 95.9
visual-place-recognition-on-spedBoQ (ResNet-50)
Recall@1: 86.5
Recall@10: 95.7
Recall@5: 93.4
visual-place-recognition-on-st-luciaBoQ
Recall@10: 100
Recall@5: 100
visual-place-recognition-on-st-luciaBoQ (DINOv2)
Recall@1: 100.0
Recall@5: 100
visual-place-recognition-on-svox-nightBoQ (ResNet-50)
Recall@1: 87.1
visual-place-recognition-on-svox-overcastBoQ (ResNet-50)
Recall@1: 97.8
visual-place-recognition-on-svox-rainBoQ (ResNet-50)
Recall@1: 96.2
visual-place-recognition-on-svox-snowBoQ (ResNet-50)
Recall@1: 98.7
visual-place-recognition-on-svox-sunBoQ (ResNet-50)
Recall@1: 95.9
visual-place-recognition-on-tokyo247BoQ
Recall@1: 98.1
Recall@10: 98.7
Recall@5: 98.1

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
BoQ:一个地方的价值相当于一袋可学习的查询 | 论文 | HyperAI超神经