4 个月前

放弃标签:无监督迁移

放弃标签:无监督迁移

摘要

基础视觉-语言模型已经实现了预训练表示在广泛下游任务中的显著零样本迁移能力。然而,为了解决新任务,零样本迁移仍然需要人类指导来定义数据中出现的视觉类别。本文展示了当在不同基础模型的表示空间中搜索能够诱导最大间隔分类器的数据集标签时,完全无监督的迁移能力会自然涌现。我们提出了TURTLE,一种完全无监督的方法,该方法有效地利用这一指导原则,在没有任何监督和任务特定表示学习的情况下揭示下游数据集的潜在标签。我们在包含26个数据集的多样化基准测试套件上评估了TURTLE,并证明它达到了新的无监督性能最先进水平。此外,尽管TURTLE是完全无监督的,但在多个数据集上其性能超过了零样本迁移基线。特别是,通过使用相同的表示空间(涵盖多种架构和模型大小),TURTLE在26个数据集上的平均性能与CLIP零样本迁移相当。通过利用两个基础模型的表示空间来引导对潜在标签的搜索,TURTLE不仅超越了零样本迁移基线,还超越了无监督提示调优基线,展示了无监督迁移令人惊讶的强大能力和有效性。

代码仓库

mlbio-epfl/turtle
官方
pytorch

基准测试

基准方法指标
image-clustering-on-birdsnapTURTLE (CLIP + DINOv2)
Accuracy: 68.1
image-clustering-on-caltech-101TURTLE (CLIP + DINOv2)
Accuracy: 89.8
image-clustering-on-cifar-10TURTLE (CLIP + DINOv2)
ARI: 0.989
Accuracy: 0.995
NMI: 0.985
image-clustering-on-cifar-100TURTLE (CLIP + DINOv2)
ARI: 0.834
Accuracy: 0.898
NMI: 0.915
image-clustering-on-clevr-countsTURTLE (CLIP + DINOv2)
Accuracy: 24.0
image-clustering-on-country211TURTLE (CLIP + DINOv2)
Accuracy: 11.1
image-clustering-on-dtdTURTLE (CLIP + DINOv2)
Accuracy: 57.3
image-clustering-on-eurosatTURTLE (CLIP + DINOv2)
Accuracy: 96.6
image-clustering-on-fer2013TURTLE (CLIP + DINOv2)
Accuracy: 36.2
image-clustering-on-fgvc-aircraftTURTLE (CLIP + DINOv2)
Accuracy: 36.5
image-clustering-on-flowers-102TURTLE (CLIP + DINOv2)
Accuracy: 99.6
image-clustering-on-food-101TURTLE (CLIP + DINOv2)
Accuracy: 92.2
image-clustering-on-gtsrbTURTLE (CLIP + DINOv2)
Accuracy: 48.4
image-clustering-on-hateful-memesTURTLE (CLIP + DINOv2)
Accuracy: 54.2
image-clustering-on-imagenetTURTLE (CLIP + DINOv2)
ARI: 62.5
Accuracy: 72.9
NMI: 88.2
image-clustering-on-kinetics-700TURTLE (CLIP + DINOv2)
Accuracy: 43.0
image-clustering-on-kittiTURTLE (CLIP + DINOv2)
Accuracy: 39.4
image-clustering-on-mnistTURTLE (CLIP + DINOv2)
Accuracy: 97.8
image-clustering-on-oxford-iiit-petsTURTLE (CLIP + DINOv2)
Accuracy: 92.3
image-clustering-on-pcamTURTLE (CLIP + DINOv2)
Accuracy: 52.0
image-clustering-on-rendered-sst2TURTLE (CLIP + DINOv2)
Accuracy: 51.6
image-clustering-on-resisc45TURTLE (CLIP + DINOv2)
Accuracy: 89.6
image-clustering-on-stanford-carsTURTLE (CLIP + DINOv2)
Accuracy: 0.646
image-clustering-on-stl-10TURTLE (CLIP + DINOv2)
ARI: 0.994
Accuracy: 0.997
NMI: 0.993
image-clustering-on-sun397TURTLE (CLIP + DINOv2)
Accuracy: 67.9
image-clustering-on-ucf101TURTLE (CLIP + DINOv2)
Accuracy: 82.3
unsupervised-image-classification-on-cifar-10TURTLE (CLIP + DINOv2)
Accuracy: 99.5
unsupervised-image-classification-on-imagenetTURTLE (CLIP + DINOv2)
ARI: 62.5
Accuracy (%): 72.9
unsupervised-image-classification-on-mnistTURTLE (CLIP + DINOv2)
Accuracy: 97.8
unsupervised-image-classification-on-stl-10TURTLE (CLIP + DINOv2)
Accuracy: 99.7

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供