4 个月前

层次信息流用于广义高效的图像恢复

层次信息流用于广义高效的图像恢复

摘要

尽管视觉变压器在众多图像恢复(IR)任务中展现出巨大潜力,但如何高效地将其泛化并扩展到多个IR任务上仍然是一个挑战。为了在效率和模型容量之间找到平衡,提出了一种分层信息流机制用于图像恢复,称为Hi-IR,该机制以自下而上的方式逐步传播像素之间的信息。Hi-IR构建了一个分层的信息树,表示降质图像的三个层次。每个层次封装了不同类型的信息,高层次包含更广泛的对象和概念,低层次则专注于局部细节。此外,分层树结构去除了长距离自注意力机制,提高了计算效率和内存利用率,从而为有效的模型扩展做好准备。基于此,我们探索了模型扩展以提升方法的能力,预计这将在大规模训练设置中对图像恢复产生积极影响。大量实验结果表明,Hi-IR在七种常见的图像恢复任务中达到了最先进的性能,证实了其有效性和泛化能力。

基准测试

基准方法指标
color-image-denoising-on-kodak24-sigma15Hi-IR
PSNR: 35.42
color-image-denoising-on-kodak24-sigma25Hi-IR
PSNR: 33.01
color-image-denoising-on-kodak24-sigma50Hi-IR
PSNR: 29.98
color-image-denoising-on-mcmaster-sigma15Hi-IR
PSNR: 35.69
color-image-denoising-on-mcmaster-sigma25Hi-IR
PSNR: 33.44
color-image-denoising-on-mcmaster-sigma50Hi-IR
PSNR: 30.42
color-image-denoising-on-urban100-sigma15-1Hi-IR
PSNR: 35.46
color-image-denoising-on-urban100-sigma25Hi-IR
PSNR: 33.34
color-image-denoising-on-urban100-sigma50Hi-IR
PSNR: 30.59
grayscale-image-denoising-on-set12-sigma15Hi-IR
PSNR: 33.48
grayscale-image-denoising-on-set12-sigma25Hi-IR
PSNR: 31.19
grayscale-image-denoising-on-set12-sigma50Hi-IR
PSNR: 28.15
grayscale-image-denoising-on-urban100-sigma15-1Hi-IR
PSNR: 34.11
grayscale-image-denoising-on-urban100-sigma25Hi-IR
PSNR: 31.92
grayscale-image-denoising-on-urban100-sigma50Hi-IR
PSNR: 28.91
image-deblurring-on-goproHi-IR-L
PSNR: 33.99
image-deblurring-on-hide-trained-on-goproHi-IR-L
PSNR: 31.64
image-super-resolution-on-bsd100-2x-upscalingHi-IR-L
PSNR: 32.77
SSIM: 0.9092
image-super-resolution-on-bsd100-3x-upscalingHi-IR-L
PSNR: 29.67
SSIM: 0.8256
image-super-resolution-on-bsd100-4x-upscalingHi-IR-L
PSNR: 28.13
SSIM: 0.7622
image-super-resolution-on-manga109-2xHi-IR-L
PSNR: 41.22
SSIM: 0.9846
image-super-resolution-on-manga109-3xHi-IR-L
PSNR: 36.12
SSIM: 0.9588
image-super-resolution-on-manga109-4xHi-IR-L
PSNR: 33.13
SSIM: 0.9366
image-super-resolution-on-set14-2x-upscalingHi-IR-L
PSNR: 35.27
SSIM: 0.9311
image-super-resolution-on-set14-3x-upscalingHi-IR-L
PSNR: 31.55
SSIM: 0.8616
image-super-resolution-on-set14-4x-upscalingHi-IR-L
PSNR: 29.49
SSIM: 0.8041
image-super-resolution-on-set5-2x-upscalingHi-IR-L
PSNR: 38.87
SSIM: 0.9663
image-super-resolution-on-set5-3x-upscalingHi-IR-L
PSNR: 35.2
SSIM: 0.938
image-super-resolution-on-set5-4x-upscalingHi-IR-L
PSNR: 33.22
SSIM: 0.9103
image-super-resolution-on-urban100-2xHi-IR-L
PSNR: 35.16
SSIM: 0.9505
image-super-resolution-on-urban100-3xHi-IR-L
PSNR: 31.07
SSIM: 0.902
image-super-resolution-on-urban100-4xHi-IR-L
PSNR: 28.72
SSIM: 0.8514
jpeg-artifact-correction-on-bsd500-quality-10Hi-IR
PSNR: 28.35
SSIM: 0.8092
jpeg-artifact-correction-on-bsd500-quality-20Hi-IR
PSNR: 30.61
SSIM: 0.874
jpeg-artifact-correction-on-bsd500-quality-30Hi-IR
PSNR: 31.99
SSIM: 0.9035
jpeg-artifact-correction-on-bsd500-quality-40Hi-IR
PSNR: 32.92
SSIM: 0.9195
jpeg-artifact-correction-on-classic5-qualityHi-IR
PSNR: 30.38
SSIM: 0.8266
jpeg-artifact-correction-on-classic5-quality-1Hi-IR
PSNR: 32.62
SSIM: 0.8751
jpeg-artifact-correction-on-classic5-quality-2Hi-IR
PSNR: 33.8
SSIM: 0.8962
jpeg-artifact-correction-on-classic5-quality-3Hi-IR
PSNR: 34.61
SSIM: 0.9082
jpeg-artifact-correction-on-live1-quality-10Hi-IR
PSNR: 28.36
SSIM: 0.818
jpeg-artifact-correction-on-live1-quality-10-1Hi-IR
PSNR: 29.94
SSIM: 0.8359
jpeg-artifact-correction-on-live1-quality-20Hi-IR
PSNR: 30.66
SSIM: 0.8797
jpeg-artifact-correction-on-live1-quality-20-1Hi-IR
PSNR: 32.31
SSIM: 0.8938
jpeg-artifact-correction-on-live1-quality-30Hi-IR
PSNR: 32.02
SSIM: 0.9063
jpeg-artifact-correction-on-live1-quality-30-1Hi-IR
PSNR: 33.73
SSIM: 0.9223
jpeg-artifact-correction-on-live1-quality-40Hi-IR
PSNR: 34.71
SSIM: 0.9347
jpeg-artifact-correction-on-live1-quality-40-1Hi-IR
PSNR: 32.94
SSIM: 0.921
jpeg-artifact-correction-on-urban100-qualityHi-IR
PSNR: 31.07
SSIM: 0.895
jpeg-artifact-correction-on-urban100-quality-1Hi-IR
PSNR: 33.51
SSIM: 0.925
jpeg-artifact-correction-on-urban100-quality-2Hi-IR
PSNR: 34.86
SSIM: 0.9459
jpeg-artifact-correction-on-urban100-quality-3Hi-IR
PSNR: 35.77
SSIM: 0.9561
jpeg-artifact-correction-on-urban100-quality-4Hi-IR
PSNR: 29.11
SSIM: 0.8727
jpeg-artifact-correction-on-urban100-quality-5Hi-IR
PSNR: 31.36
SSIM: 0.9115
jpeg-artifact-correction-on-urban100-quality-6Hi-IR
PSNR: 32.57
SSIM: 0.9279
jpeg-artifact-correction-on-urban100-quality-7Hi-IR
PSNR: 33.37
SSIM: 0.9373

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
层次信息流用于广义高效的图像恢复 | 论文 | HyperAI超神经