
摘要
视频级别的上下文信息在视觉目标跟踪中变得越来越重要。然而,现有的方法通常仅使用少数几个标记来传递这些信息,这可能导致信息丢失并限制其全面捕捉上下文的能力。为了解决这一问题,我们提出了一种新的视频级别视觉目标跟踪框架,称为MCITrack。该框架利用Mamba的隐藏状态,持续记录并传输整个视频流中的大量上下文信息,从而实现更稳健的目标跟踪。MCITrack的核心组件是上下文信息融合模块,该模块由Mamba层和交叉注意力层组成。Mamba层存储历史上下文信息,而交叉注意力层将这些信息整合到每个骨干块的当前视觉特征中。通过与骨干网络的深度集成,该模块增强了模型在多个层次上捕捉和利用上下文信息的能力。实验结果表明,MCITrack在多个基准测试中表现出色。例如,在LaSOT数据集上实现了76.6%的AUC(Area Under Curve),在GOT-10k数据集上实现了80.0%的AO(Average Overlap),确立了新的最先进性能。代码和模型可在https://github.com/kangben258/MCITrack 获取。
代码仓库
kangben258/MCITrack
官方
pytorch
GitHub 中提及
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| semi-supervised-video-object-segmentation-on-15 | MCITrack-L384 | EAO: 0.624 |
| semi-supervised-video-object-segmentation-on-15 | MCITrack-B224 | EAO: 0.619 |
| video-object-tracking-on-nv-vot211 | MCITrack_L384 | AUC: 41.50 Precision: 54.20 |
| visual-object-tracking-on-got-10k | MCITrack-B224 | Average Overlap: 77.9 Success Rate 0.5: 88.2 Success Rate 0.75: 76.8 |
| visual-object-tracking-on-got-10k | MCITrack-L384 | Average Overlap: 80.0 Success Rate 0.5: 88.5 Success Rate 0.75: 80.2 |
| visual-object-tracking-on-lasot | MCITrack-L384 | AUC: 76.6 Normalized Precision: 86.1 Precision: 85.0 |
| visual-object-tracking-on-lasot | MCITrack-B224 | AUC: 75.3 Normalized Precision: 85.6 Precision: 83.3 |
| visual-object-tracking-on-lasot-ext | MCITrack-L384 | AUC: 55.7 Normalized Precision: 66.5 Precision: 62.9 |
| visual-object-tracking-on-lasot-ext | MCITrack-B224 | AUC: 54.6 Normalized Precision: 65.7 Precision: 62.1 |
| visual-object-tracking-on-tnl2k | MCITrack-B224 | AUC: 62.9 |
| visual-object-tracking-on-tnl2k | MCITrack-L384 | AUC: 65.3 |
| visual-object-tracking-on-trackingnet | MCITrack-B224 | Accuracy: 86.3 Normalized Precision: 90.9 Precision: 86.1 |
| visual-object-tracking-on-trackingnet | MCITrack-L384 | Accuracy: 87.9 Normalized Precision: 92.1 Precision: 89.2 |