
摘要
消息传递图神经网络(Message-passing Graph Neural Networks, GNNs)常因其表达能力有限、存在过平滑(over-smoothing)与过压缩(over-squashing)等问题,以及在捕捉长程依赖关系方面的挑战而受到批评。相比之下,图注意力网络(Graph Transformers, GTs)因其采用全局注意力机制,被认为在理论上能够缓解上述问题,因而被视为更具优势的模型。现有文献普遍认为,GTs在图级任务中表现优于GNNs,尤其是在小分子图的分类与回归任务中。在本研究中,我们通过一种增强型框架——GNN+,探索了GNNs尚未被充分挖掘的潜力。该框架整合了六种广泛使用的技术:边特征融合、归一化、丢弃(dropout)、残差连接、前馈网络以及位置编码,旨在有效应对图级任务的挑战。我们对三种经典GNN模型(GCN、GIN与GatedGCN)在GNN+框架下进行了系统性重评估,覆盖了14个广为人知的图级数据集。实验结果表明,与当前主流观点相反,这些经过增强的经典GNN模型在性能上不仅持续达到与GTs相当的水平,甚至在多数情况下超越GTs,在所有数据集中均位列前三,并在其中8个数据集中取得第一名。此外,这些GNN模型展现出更高的计算效率,在多个数据集上运行速度比GTs快数倍。这一发现凸显了简单GNN架构的潜在能力,挑战了“复杂机制(如全局注意力)是实现优越图级性能所必需”的固有认知。我们的源代码已公开,地址为:https://github.com/LUOyk1999/GNNPlus。
代码仓库
LUOyk1999/GNNPlus
官方
pytorch
GitHub 中提及
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| graph-classification-on-cifar10-100k | GatedGCN+ | Accuracy (%): 77.218 ± 0.381 |
| graph-classification-on-malnet-tiny | GatedGCN+ | Accuracy: 94.600±0.570 |
| graph-classification-on-mnist | GCN+ | Accuracy: 98.382 ± 0.095 |
| graph-classification-on-mnist | GatedGCN+ | Accuracy: 98.712 ± 0.137 |
| graph-classification-on-peptides-func | GCN+ | AP: 0.7261 ± 0.0067 |
| graph-property-prediction-on-ogbg-code2 | GatedGCN+ | Test F1 score: 0.1896 ± 0.0024 Validation F1 score: 0.1742 ± 0.0027 |
| graph-property-prediction-on-ogbg-molhiv | GatedGCN+ | Ext. data: No Number of params: 1076633 Test ROC-AUC: 0.8040 ± 0.0164 Validation ROC-AUC: 0.8329 ± 0.0158 |
| graph-property-prediction-on-ogbg-molpcba | GatedGCN+ | Ext. data: No Number of params: 6016860 Test AP: 0.2981 ± 0.0024 Validation AP: 0.3011 ± 0.0037 |
| graph-property-prediction-on-ogbg-ppa | GatedGCN+ | Ext. data: No Number of params: 5547557 Test Accuracy: 0.8258 ± 0.0055 Validation Accuracy: 0.7815 ± 0.0043 |
| graph-property-prediction-on-ogbg-ppa | GCN+ | Ext. data: No Number of params: 5549605 Test Accuracy: 0.8077 ± 0.0041 Validation Accuracy: 0.7586 ± 0.0032 |
| graph-property-prediction-on-ogbg-ppa | GIN+ | Ext. data: No Number of params: 8173605 Test Accuracy: 0.8107 ± 0.0053 Validation Accuracy: 0.7786 ± 0.0095 |
| graph-regression-on-peptides-struct | GCN+ | MAE: 0.2421 ± 0.0016 |
| graph-regression-on-zinc-500k | GIN+ | MAE: 0.065 |
| node-classification-on-cluster | GatedGCN+ | Accuracy: 79.128 ± 0.235 |
| node-classification-on-coco-sp | GatedGCN+ | macro F1: 0.3802 ± 0.0015 |
| node-classification-on-pascalvoc-sp-1 | GatedGCN+ | macro F1: 0.4263 ± 0.0057 |
| node-classification-on-pattern | GatedGCN+ | Accuracy: 87.029 ± 0.037 |