
摘要
自动年龄与性别分类在越来越多的应用场景中变得日益重要,尤其是在社交平台与社交媒体兴起的背景下。然而,现有方法在真实世界图像上的表现仍然显著不足,尤其与近年来人脸识别任务中取得的突破性进展相比,差距尤为明显。本文表明,通过利用深度卷积神经网络(CNN)学习图像表征,可在年龄与性别分类任务上实现性能的显著提升。为此,我们提出了一种结构简单的卷积神经网络架构,即使在训练数据有限的情况下也具有良好的适用性。我们在最新的Adience年龄与性别估计基准数据集上对所提方法进行了评估,结果表明其性能显著优于当前最先进的方法。
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| age-and-gender-classification-on-adience | Levi_Hassner CNN (single crop, caffe) | Accuracy (5-fold): 85.9 |
| age-and-gender-classification-on-adience | Levi_Hassner CNN (single crop, tensorflow) | Accuracy (5-fold): 82.52 |
| age-and-gender-classification-on-adience | Levi_Hassner CNN ( over-sample, caffe) | Accuracy (5-fold): 86.8 |
| age-and-gender-classification-on-adience-age | Levi_Hassner CNN (single crop, caffe) | Accuracy (5-fold): 49.5 |
| age-and-gender-classification-on-adience-age | Levi_Hassner CNN (over-sample, caffe) | Accuracy (5-fold): 50.7 |
| age-and-gender-classification-on-adience-age | Levi_Hassner CNN (single crop, tensorflow) | Accuracy (5-fold): 44.14 |