
摘要
深度卷积神经网络已被广泛应用于显著性物体检测,并取得了当前最优的性能。然而,以往大多数方法主要关注区域精度,而忽视了边界质量的优化。本文提出了一种预测-精炼架构——BASNet,以及一种新型的混合损失函数,用于实现边界感知的显著性物体检测。具体而言,该架构由一个密集监督的编码器-解码器网络和一个残差精炼模块组成,分别负责显著性预测与显著性图的精细化优化。所提出的混合损失函数通过融合二元交叉熵(Binary Cross Entropy, BCE)、结构相似性(Structural Similarity, SSIM)和交并比(Intersection-over-Union, IoU)损失,在像素级、块级和图像级三个层次上引导网络学习输入图像与真实标签之间的映射关系。结合该混合损失,所提出的预测-精炼架构能够有效分割显著性物体区域,并精确预测具有清晰边界的精细结构。在六个公开数据集上的实验结果表明,本方法在区域和边界评估指标上均优于当前最先进的方法。此外,该方法在单张GPU上运行速度超过25帧/秒。代码已开源,地址为:https://github.com/NathanUA/BASNet。
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| camouflaged-object-segmentation-on-camo | BASNet | MAE: 0.159 S-Measure: 0.618 Weighted F-Measure: 0.413 |
| camouflaged-object-segmentation-on-cod | BASNet | MAE: 0.092 S-Measure: 0.685 Weighted F-Measure: 0.352 |
| camouflaged-object-segmentation-on-pcod-1200 | BASNet | S-Measure: 0.837 |
| dichotomous-image-segmentation-on-dis-te1 | BASNet | E-measure: 0.801 HCE: 220 MAE: 0.084 S-Measure: 0.754 max F-Measure: 0.688 weighted F-measure: 0.595 |
| dichotomous-image-segmentation-on-dis-te2 | BASNet | E-measure: 0.836 HCE: 480 MAE: 0.084 S-Measure: 0.786 max F-Measure: 0.755 weighted F-measure: 0.668 |
| dichotomous-image-segmentation-on-dis-te3 | BASNet | E-measure: 0.856 HCE: 948 MAE: 0.083 S-Measure: 0.798 max F-Measure: 0.785 weighted F-measure: 0.696 |
| dichotomous-image-segmentation-on-dis-te4 | BASNet | E-measure: 0.848 HCE: 3601 MAE: 0.091 S-Measure: 0.794 max F-Measure: 0.780 weighted F-measure: 0.693 |
| dichotomous-image-segmentation-on-dis-vd | BASNet | E-measure: 0.816 HCE: 1402 MAE: 0.094 S-Measure: 0.768 max F-Measure: 0.731 weighted F-measure: 0.641 |
| salient-object-detection-on-dut-omron | BASNet | MAE: 0.056 |
| salient-object-detection-on-duts-te | BASNet | MAE: 0.047 S-Measure: 0.876 mean E-Measure: 0.896 mean F-Measure: 0.823 |
| salient-object-detection-on-ecssd | BASNet | MAE: 0.037 |
| salient-object-detection-on-hku-is | BASNet | MAE: 0.032 |
| salient-object-detection-on-pascal-s | BASNet | MAE: 0.076 |
| salient-object-detection-on-soc | BASNet | Average MAE: 0.092 S-Measure: 0.841 mean E-Measure: 0.864 |
| salient-object-detection-on-sod | BASNet | MAE: 0.114 |