3 个月前

通过对齐变分自编码器实现的广义零样本与少样本学习

通过对齐变分自编码器实现的广义零样本与少样本学习

摘要

在广义零样本学习(generalized zero-shot learning)的众多方法中,大多依赖于图像特征空间与类别嵌入空间之间的跨模态映射。由于标注图像成本高昂,一种可行方向是通过生成图像或图像特征来扩充数据集。然而,前者往往难以保留细粒度细节,而后者则需要学习与类别嵌入相关联的映射关系。在本研究中,我们进一步推进特征生成技术,提出一种新模型:通过模态特定的对齐变分自编码器(modality-specific aligned variational autoencoders),学习图像特征与类别嵌入共享的潜在空间。该方法使得潜在特征中保留了图像与类别所需的判别性信息,进而在此基础上训练一个Softmax分类器。本方法的核心在于,我们通过对齐从图像数据和辅助信息中学习到的分布,构建出蕴含未见类别关键多模态信息的潜在特征。我们在多个基准数据集(包括CUB、SUN、AWA1和AWA2)上评估了所学习的潜在特征,不仅在广义零样本学习任务上达到了新的最优性能,同时在少样本学习(few-shot learning)任务中也取得了显著提升。此外,在ImageNet上采用多种零样本划分策略的实验结果表明,我们的潜在特征在大规模场景下具有良好的泛化能力。

基准测试

基准方法指标
generalized-few-shot-learning-on-awa2CA-VAE
Per-Class Accuracy (1-shot): 64.0
Per-Class Accuracy (10-shots): 79.0
Per-Class Accuracy (2-shots): 71.3
Per-Class Accuracy (5-shots): 76.6
generalized-few-shot-learning-on-awa2DA-VAE
Per-Class Accuracy (1-shot): 68.0
Per-Class Accuracy (10-shots): 76.8
Per-Class Accuracy (2-shots): 73.0
Per-Class Accuracy (5-shots): 75.6
generalized-few-shot-learning-on-cubCADA-VAE
Per-Class Accuracy (2-shots): 59.2
Per-Class Accuracy (1-shot): 55.2
Per-Class Accuracy (10-shots): 64.9
Per-Class Accuracy (20-shots): 66.0
Per-Class Accuracy (5-shots): 63.0
generalized-few-shot-learning-on-cubCA-VAE
Per-Class Accuracy (2-shots): 54.4
Per-Class Accuracy (1-shot): 50.6
Per-Class Accuracy (10-shots): 62.2
Per-Class Accuracy (5-shots): 59.6
generalized-few-shot-learning-on-cubDA-VAE
Per-Class Accuracy (2-shots): 54.6
Per-Class Accuracy (1-shot): 49.2
Per-Class Accuracy (10-shots): 60.8
Per-Class Accuracy (5-shots): 58.8
generalized-few-shot-learning-on-sunCADA-VAE
Per-Class Accuracy (1-shot): 37.8
Per-Class Accuracy (10-shots): 45.8
Per-Class Accuracy (2-shots): 41.4
Per-Class Accuracy (5-shots): 44.2
generalized-few-shot-learning-on-sunCA-VAE
Per-Class Accuracy (1-shot): 37.8
Per-Class Accuracy (10-shots): 45.1
Per-Class Accuracy (2-shots): 40.8
Per-Class Accuracy (5-shots): 43.6
generalized-few-shot-learning-on-sunDA-VAE
Per-Class Accuracy (1-shot): 40.6
Per-Class Accuracy (10-shots): 47.6
Per-Class Accuracy (2-shots): 43.0
Per-Class Accuracy (5-shots): 46.0
long-tail-learning-with-class-descriptors-onCADA-VAE
Long-Tailed Accuracy: 57.4
Per-Class Accuracy: 48.3
long-tail-learning-with-class-descriptors-on-1CADA-VAE
Long-Tailed Accuracy: 35.1
Per-Class Accuracy: 32.8
long-tail-learning-with-class-descriptors-on-2CADA-VAE
Long-Tailed Accuracy: 89.5
Per-Class Accuracy: 73.5
long-tail-learning-with-class-descriptors-on-3CADA-VAE
Per-Class Accuracy: 49.3

用 AI 构建 AI

从想法到上线——通过免费 AI 协同编程、开箱即用的环境和市场最优价格的 GPU 加速您的 AI 开发

AI 协同编程
即用型 GPU
最优价格
立即开始

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
通过对齐变分自编码器实现的广义零样本与少样本学习 | 论文 | HyperAI超神经