
摘要
我们提出了一种高效且强大的显著物体检测方法,该方法基于最小障碍距离(Minimum Barrier Distance, MBD)变换。MBD变换对像素值波动具有较强的鲁棒性,因此可直接应用于原始像素,无需进行区域抽象。为此,我们设计了一种近似MBD变换算法,其运算速度比精确算法提升100倍,并提供了误差界分析。基于这一快速MBD变换算法,所提出的显著物体检测方法可实现80帧每秒(FPS)的运行速度,在四个大型基准数据集上的表现显著优于以往同等速度的现有方法,且在性能上可与当前最先进方法相媲美甚至更优。此外,我们提出一种基于颜色白化(color whitening)的技术,将该方法扩展以利用基于外观的背景显著性线索。该增强版本进一步提升了检测性能,同时仍比所有其他主流方法快一个数量级。
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| video-salient-object-detection-on-davis-2016 | MB+M | AVERAGE MAE: 0.173 MAX E-MEASURE: 0.748 S-Measure: 0.600 |
| video-salient-object-detection-on-davsod | MB+M | Average MAE: 0.231 S-Measure: 0.536 max E-Measure: 0.624 |
| video-salient-object-detection-on-davsod-1 | MB+M | Average MAE: 0.261 S-Measure: 0.506 max E-measure: 0.552 |
| video-salient-object-detection-on-davsod-2 | MB+M | Average MAE: 0.251 S-Measure: 0.492 max E-measure: 0.635 |
| video-salient-object-detection-on-fbms-59 | MB+M | AVERAGE MAE: 0.206 MAX F-MEASURE: 0.487 S-Measure: 0.609 |
| video-salient-object-detection-on-mcl | MB+M | AVERAGE MAE: 0.178 MAX E-MEASURE: 0.733 S-Measure: 0.539 |
| video-salient-object-detection-on-segtrack-v2 | MB+M | AVERAGE MAE: 0.146 S-Measure: 0.618 max E-measure: 0.778 |
| video-salient-object-detection-on-uvsd | MB+M | Average MAE: 0.169 S-Measure: 0.563 max E-measure: 0.668 |
| video-salient-object-detection-on-visal | MB+M | Average MAE: 0.129 S-Measure: 0.726 max E-measure: 0.832 |
| video-salient-object-detection-on-vos-t | MB+M | Average MAE: 0.158 S-Measure: 0.661 max E-measure: 0.698 |