
摘要
本文提出了一种基于最小生成树(Minimum Spanning Tree, MST)的实时显著目标检测系统。由于背景区域通常与图像边界相连,显著目标可通过计算像素到边界的距离来提取。然而,高效度量图像边界连通性是一个具有挑战性的问题。现有方法要么依赖超像素表示以减少处理单元数量,要么对距离变换进行近似处理。与此不同,本文提出了一种基于最小生成树的精确且无需迭代的解决方案。图像的最小生成树表示能够自然地揭示场景中物体的几何结构信息,同时显著缩小最短路径的搜索空间,从而实现高效且高质量的距离变换算法。为进一步弥补距离变换在显著目标检测中的不足,我们引入了一种边界差异性度量方法。大量实验评估表明,所提算法在效率与准确性方面均优于当前最先进的方法,达到了领先水平。
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| video-salient-object-detection-on-davis-2016 | MSTM | AVERAGE MAE: 0.174 MAX E-MEASURE: 0.734 S-Measure: 0.566 |
| video-salient-object-detection-on-davsod | MSTM | Average MAE: 0.214 S-Measure: 0.530 max E-Measure: 0.632 |
| video-salient-object-detection-on-davsod-1 | MSTM | Average MAE: 0.251 S-Measure: 0.496 max E-measure: 0.573 |
| video-salient-object-detection-on-davsod-2 | MSTM | Average MAE: 0.227 S-Measure: 0.488 max E-measure: 0.676 |
| video-salient-object-detection-on-fbms-59 | MSTM | AVERAGE MAE: 0.177 MAX F-MEASURE: 0.500 S-Measure: 0.613 |
| video-salient-object-detection-on-mcl | MSTM | AVERAGE MAE: 0.078 MAX E-MEASURE: 0.838 S-Measure: 0.700 |
| video-salient-object-detection-on-segtrack-v2 | MSTM | AVERAGE MAE: 0.114 S-Measure: 0.643 max E-measure: 0.733 |
| video-salient-object-detection-on-uvsd | MSTM | Average MAE: 0.145 S-Measure: 0.551 max E-measure: 0.718 |
| video-salient-object-detection-on-visal | MSTM | Average MAE: 0.095 S-Measure: 0.749 max E-measure: 0.816 |
| video-salient-object-detection-on-vos-t | MSTM | Average MAE: 0.144 S-Measure: 0.657 max E-measure: 0.695 |