
摘要
本文提出了一种基于二阶空间兼容性(SC²)度量的点云配准(PCR)方法,称为SC²-PCR,以实现高效且鲁棒的点云配准。首先,我们提出了一种二阶空间兼容性(SC²)度量,用于计算对应关系之间的相似性。该度量关注全局兼容性而非局部一致性,能够在早期阶段更显著地区分内点与外点,从而实现更具区分性的聚类效果。基于该度量,我们的配准流程采用一种全局谱方法,从初始对应关系中提取若干可靠的种子点。随后,设计了一种两阶段策略,基于SC²度量矩阵将每个种子点扩展为一个一致集(consensus set)。最后,将每个一致集输入加权奇异值分解(SVD)算法,生成候选刚性变换,并从中选择最优模型作为最终结果。所提方法能够在较少采样次数下保证找到一定数量的无外点一致集,显著提升了模型估计的效率与鲁棒性。此外,所提出的SC²度量具有通用性,可轻松集成至基于深度学习的配准框架中。通过大量实验,全面验证了该方法的性能表现。
基准测试
| 基准 | 方法 | 指标 |
|---|---|---|
| point-cloud-registration-on-eth-trained-on | FCGF+SC2-PCR | Recall (30cm, 5 degrees): 92.85 |
| point-cloud-registration-on-eth-trained-on | FPFH+SC2-PCR | Recall (30cm, 5 degrees): 85.41 |
| point-cloud-registration-on-fp-o-e | FCGF+SC2-PCR | RRE (degrees): 1.26 RTE (cm): 0.83 Recall (3cm, 10 degrees): 98.52 |
| point-cloud-registration-on-fp-o-e | FPFH+SC2-PCR | RRE (degrees): 0.91 RTE (cm): 0.43 Recall (3cm, 10 degrees): 99.88 |
| point-cloud-registration-on-fp-o-h | FCGF+SC2-PCR | RRE (degrees): 2.68 RTE (cm): 1.72 Recall (3cm, 10 degrees): 17.80 |
| point-cloud-registration-on-fp-o-h | FPFH+SC2-PCR | RRE (degrees): 2.42 RTE (cm): 1.23 Recall (3cm, 10 degrees): 38.85 |
| point-cloud-registration-on-fp-o-m | FCGF+SC2-PCR | RRE (degrees): 1.98 RTE (cm): 1.27 Recall (3cm, 10 degrees): 63.00 |
| point-cloud-registration-on-fp-o-m | FPFH+SC2-PCR | RRE (degrees): 1.68 RTE (cm): 0.80 Recall (3cm, 10 degrees): 84.70 |
| point-cloud-registration-on-fp-r-e | FCGF+SC2-PCR | RRE (degrees): 1.21 RTE (cm): 0.82 Recall (3cm, 10 degrees): 98.46 |
| point-cloud-registration-on-fp-r-e | FPFH+SC2-PCR | RRE (degrees): 0.95 RTE (cm): 0.43 Recall (3cm, 10 degrees): 99.64 |
| point-cloud-registration-on-fp-r-h | FCGF+SC2-PCR | RRE (degrees): 1.77 RTE (cm): 1.08 Recall (3cm, 10 degrees): 85.77 |
| point-cloud-registration-on-fp-r-h | FPFH+SC2-PCR | RRE (degrees): 1.76 RTE (cm): 0.78 Recall (3cm, 10 degrees): 75.21 |
| point-cloud-registration-on-fp-r-m | FPFH+SC2-PCR | RRE (degrees): 1.43 RTE (cm): 0.60 Recall (3cm, 10 degrees): 94.54 |
| point-cloud-registration-on-fp-r-m | FCGF+SC2-PCR | RRE (degrees): 1.67 RTE (cm): 1.02 Recall (3cm, 10 degrees): 91.93 |
| point-cloud-registration-on-fp-t-e | FCGF+SC2-PCR | RRE (degrees): 1.25 RTE (cm): 0.83 Recall (3cm, 10 degrees): 98.34 |
| point-cloud-registration-on-fp-t-e | FPFH+SC2-PCR | RRE (degrees): 0.93 RTE (cm): 0.43 Recall (3cm, 10 degrees): 99.76 |
| point-cloud-registration-on-fp-t-h | FCGF+SC2-PCR | RRE (degrees): 1.25 RTE (cm): 0.82 Recall (3cm, 10 degrees): 98.22 |
| point-cloud-registration-on-fp-t-h | FPFH+SC2-PCR | RRE (degrees): 0.93 RTE (cm): 0.43 Recall (3cm, 10 degrees): 99.58 |
| point-cloud-registration-on-fp-t-m | FCGF+SC2-PCR | RRE (degrees): 1.24 RTE (cm): 0.82 Recall (3cm, 10 degrees): 98.34 |
| point-cloud-registration-on-fp-t-m | FPFH+SC2-PCR | RRE (degrees): 0.92 RTE (cm): 0.43 Recall (3cm, 10 degrees): 99.53 |
| point-cloud-registration-on-kitti-trained-on | FCGF+SC2-PCR | Success Rate: 97.66 |