HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
车道检测
Lane Detection On Tusimple
Lane Detection On Tusimple
评估指标
Accuracy
F1 score
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Accuracy
F1 score
Paper Title
Repository
SCNN_UNet_Attention_PL*
98.38
-
Robust Lane Detection through Self Pre-training with Masked Sequential Autoencoders and Fine-tuning with Customized PolyLoss
-
PE-RESA
96.93
-
Lane detection with Position Embedding
-
FOLOLane(ERFNet)
96.92
-
Focus on Local: Detecting Lane Marker from Bottom Up via Key Point
-
CLRNet(ResNet-34)
96.9%
97.82
CLRNet: Cross Layer Refinement Network for Lane Detection
CLLD
96.82
-
Contrastive Learning for Lane Detection via cross-similarity
CLRNet(ResNet-18)
96.82%
97.89
CLRNet: Cross Layer Refinement Network for Lane Detection
RESA
96.82
96.93
RESA: Recurrent Feature-Shift Aggregator for Lane Detection
CANet-L(ResNet101)
96.76%
97.77
CANet: Curved Guide Line Network with Adaptive Decoder for Lane Detection
-
CANet-M
96.66%
97.44
CANet: Curved Guide Line Network with Adaptive Decoder for Lane Detection
-
ENet-SAD
96.64%
95.92
Learning Lightweight Lane Detection CNNs by Self Attention Distillation
HarD-SP
96.58%
96.38
Towards Lightweight Lane Detection by Optimizing Spatial Embedding
CANet-S
96.56%
97.51
CANet: Curved Guide Line Network with Adaptive Decoder for Lane Detection
-
CondLaneNet-L(ResNet-101)
96.54%
97.24
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution
Pairwise pixel supervision + FCN
96.50%
94.31
Learning to Cluster for Proposal-Free Instance Segmentation
Oblique Convolution
96.50%
97.42
-
-
EL-GAN
96.40%
96.26
EL-GAN: Embedding Loss Driven Generative Adversarial Networks for Lane Detection
-
LaneNet
96.4%
94.80
Towards End-to-End Lane Detection: an Instance Segmentation Approach
Discriminative loss function
96.40%
-
Semantic Instance Segmentation with a Discriminative Loss Function
ENet-Label
96.29%
95.23
Agnostic Lane Detection
-
R-34-E2E
96.22%
96.58
End-to-End Lane Marker Detection via Row-wise Classification
0 of 41 row(s) selected.
Previous
Next
Lane Detection On Tusimple | SOTA | HyperAI超神经