HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
度量学习
Metric Learning On Cub 200 2011
Metric Learning On Cub 200 2011
评估指标
R@1
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
R@1
Paper Title
Repository
Unicom+ViT-L@336px
90.1
Unicom: Universal and Compact Representation Learning for Image Retrieval
EfficientDML-VPTSP-G/512
88.5
Learning Semantic Proxies from Visual Prompts for Parameter-Efficient Fine-Tuning in Deep Metric Learning
Hyp-ViT
85.6
Hyperbolic Vision Transformers: Combining Improvements in Metric Learning
NED
74.9
Calibrated neighborhood aware confidence measure for deep metric learning
-
CCL (ResNet-50)
73.45
Center Contrastive Loss for Metric Learning
-
ResNet-50 + AVSL
71.9
Attributable Visual Similarity Learning
ResNet-50 + Intra-Batch Connections
71.8
Learning Intra-Batch Connections for Deep Metric Learning
ResNet50 + Language
71.4
Integrating Language Guidance into Vision-based Deep Metric Learning
ResNet-50 + Metrix
71.4
It Takes Two to Tango: Mixup for Deep Metric Learning
BN-Inception + Proxy-Anchor
71.1
Proxy Anchor Loss for Deep Metric Learning
ResNet50 + NIR
70.5
Non-isotropy Regularization for Proxy-based Deep Metric Learning
ResNet50 + S2SD
70.1
S2SD: Simultaneous Similarity-based Self-Distillation for Deep Metric Learning
ResNet-50 + Cross-Entropy
69.2
A unifying mutual information view of metric learning: cross-entropy vs. pairwise losses
ResNet50 + DiVA
69.2
DiVA: Diverse Visual Feature Aggregation for Deep Metric Learning
ResNet-50 + ProxyNCA++
69.0
ProxyNCA++: Revisiting and Revitalizing Proxy Neighborhood Component Analysis
MS + DIML
68.15
Towards Interpretable Deep Metric Learning with Structural Matching
ResNet50 (128) + PADS
67.3
PADS: Policy-Adapted Sampling for Visual Similarity Learning
ABE + HORDE
66.8
Metric Learning With HORDE: High-Order Regularizer for Deep Embeddings
ResNet50 (128) + MIC
66.1
MIC: Mining Interclass Characteristics for Improved Metric Learning
BN-Inception + Group Loss
65.5
The Group Loss for Deep Metric Learning
0 of 30 row(s) selected.
Previous
Next
Metric Learning On Cub 200 2011 | SOTA | HyperAI超神经