HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
分布外检测
Out Of Distribution Detection On Imagenet 1K 9
Out Of Distribution Detection On Imagenet 1K 9
评估指标
AUROC
FPR95
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
AUROC
FPR95
Paper Title
Repository
RP+GradNorm
-
83.29
Detecting Out-of-distribution Data through In-distribution Class Prior
-
KNN (ResNet-50)
74.87
77.09
Out-of-Distribution Detection with Deep Nearest Neighbors
Watermarking (WRN-40-2 w/ Energy)
79.85
71.85
Watermarking for Out-of-distribution Detection
Watermarking (WRN-40-2 w/ MSP)
82.03
70.59
Watermarking for Out-of-distribution Detection
DOE
83.05
67.84
Out-of-distribution Detection with Implicit Outlier Transformation
DML
-
61.43
Decoupling MaxLogit for Out-of-Distribution Detection
-
GradNorm (ResNetv2-101)
-
60.86
On the Importance of Gradients for Detecting Distributional Shifts in the Wild
KNN (ResNet-50 SupCon)
84.62
60.02
Out-of-Distribution Detection with Deep Nearest Neighbors
ReAct (ResNet-50)
86.64
51.56
ReAct: Out-of-distribution Detection With Rectified Activations
ODIN+UMAP (ResNet-50)
86.99
50.06
Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection Capability
MOS (BiT-S-R101x1)
89.06
49.54
MOS: Towards Scaling Out-of-distribution Detection for Large Semantic Space
DICE (ResNet-50)
87.48
46.49
DICE: Leveraging Sparsification for Out-of-Distribution Detection
SHE
-
45.35
Out-of-Distribution Detection based on In-Distribution Data Patterns Memorization with Modern Hopfield Energy
-
NPOS
89.44
45.27
Non-Parametric Outlier Synthesis
MCM (CLIP-B)
89.77
44.69
Delving into Out-of-Distribution Detection with Vision-Language Representations
ASH-S (ResNet-50)
90.98
39.78
Extremely Simple Activation Shaping for Out-of-Distribution Detection
RankFeat (ResNetv2-101)
90.93
39.34
RankFeat: Rank-1 Feature Removal for Out-of-distribution Detection
DICE + ReAct (ResNet-50)
90.67
36.86
DICE: Leveraging Sparsification for Out-of-Distribution Detection
MCM (CLIP-L)
92.00
35.42
Delving into Out-of-Distribution Detection with Vision-Language Representations
SCALE (ResNet50)
92.26
34.51
Scaling for Training Time and Post-hoc Out-of-distribution Detection Enhancement
0 of 24 row(s) selected.
Previous
Next
Out Of Distribution Detection On Imagenet 1K 9 | SOTA | HyperAI超神经