HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
语义分割
Semantic Segmentation On Stanford2D3D 1
Semantic Segmentation On Stanford2D3D 1
评估指标
mAcc
mIoU
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
mAcc
mIoU
Paper Title
Repository
SFSS-MMSI (RGB+HHA)
70.68
60.6%
Single Frame Semantic Segmentation Using Multi-Modal Spherical Images
SFSS-MMSI (RGB+Depth+Normal)
69.03
59.43%
Single Frame Semantic Segmentation Using Multi-Modal Spherical Images
SFSS-MMSI (RGB+Normal)
68.79
58.24%
Single Frame Semantic Segmentation Using Multi-Modal Spherical Images
SGAT4PASS(RGB only, Fold 1)
-
56.4%
SGAT4PASS: Spherical Geometry-Aware Transformer for PAnoramic Semantic Segmentation
SFSS-MMSI (RGB+Depth)
68.57
55.49%
Single Frame Semantic Segmentation Using Multi-Modal Spherical Images
SGAT4PASS(RGB only, 3 Fold AVG)
-
55.3%
SGAT4PASS: Spherical Geometry-Aware Transformer for PAnoramic Semantic Segmentation
Trans4PASS+ (Supervised + Small + MS)
-
54.0%
Behind Every Domain There is a Shift: Adapting Distortion-aware Vision Transformers for Panoramic Semantic Segmentation
Trans4PASS (Supervised + Small + MS)
-
53.0%
Bending Reality: Distortion-aware Transformers for Adapting to Panoramic Semantic Segmentation
SFSS-MMSI (RGB Only)
63.96
52.87%
Single Frame Semantic Segmentation Using Multi-Modal Spherical Images
Trans4PASS+ (UDA + MPA + MS)
-
52.3%
Behind Every Domain There is a Shift: Adapting Distortion-aware Vision Transformers for Panoramic Semantic Segmentation
CBFC
65.6
52.2%
Complementary Bi-directional Feature Compression for Indoor 360° Semantic Segmentation with Self-distillation
-
Trans4PASS (Supervised + Small)
-
52.1%
Bending Reality: Distortion-aware Transformers for Adapting to Panoramic Semantic Segmentation
HoHoNet (ResNet-101)
65.0
52.0%
HoHoNet: 360 Indoor Holistic Understanding with Latent Horizontal Features
Trans4PASS (UDA + MPA + MS)
-
51.2%
Bending Reality: Distortion-aware Transformers for Adapting to Panoramic Semantic Segmentation
Trans4PASS (UDA + MPA)
-
50.8%
Bending Reality: Distortion-aware Transformers for Adapting to Panoramic Semantic Segmentation
PanoFormer
64.5
48.9%
PanoFormer: Panorama Transformer for Indoor 360 Depth Estimation
Trans4PASS (UDA + Source Only)
-
48.1%
Bending Reality: Distortion-aware Transformers for Adapting to Panoramic Semantic Segmentation
FreDSNet
63.1
46.1%
FreDSNet: Joint Monocular Depth and Semantic Segmentation with Fast Fourier Convolutions
Tangent (ResNet-101)
65.2
45.6%
Tangent Images for Mitigating Spherical Distortion
SWSCNN
-
43.4%
Spin-Weighted Spherical CNNs
0 of 25 row(s) selected.
Previous
Next
Semantic Segmentation On Stanford2D3D 1 | SOTA | HyperAI超神经