HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
半监督图像分类
Semi Supervised Image Classification On Cifar 2
Semi Supervised Image Classification On Cifar 2
评估指标
Percentage error
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Percentage error
Paper Title
Repository
Ⅱ-Model
39.19
Regularization With Stochastic Transformations and Perturbations for Deep Semi-Supervised Learning
-
SESEMI SSL (ConvNet)
38.7
Exploring Self-Supervised Regularization for Supervised and Semi-Supervised Learning
Temporal ensembling
38.65
Temporal Ensembling for Semi-Supervised Learning
R2-D2 (CNN-13)
32.87
Repetitive Reprediction Deep Decipher for Semi-Supervised Learning
Dual Student (480)
32.77
Dual Student: Breaking the Limits of the Teacher in Semi-supervised Learning
UPS (CNN-13)
32
In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label Selection Framework for Semi-Supervised Learning
EnAET (WRN-28-2)
26.93±0.21
EnAET: A Self-Trained framework for Semi-Supervised and Supervised Learning with Ensemble Transformations
SHOT-VAE
25.3
SHOT-VAE: Semi-supervised Deep Generative Models With Label-aware ELBO Approximations
SemCo (μ=7)
24.45±0.12
All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training
LiDAM
23.22
LiDAM: Semi-Supervised Learning with Localized Domain Adaptation and Iterative Matching
-
FixMatch (CTA, WRN-28-8)
23.18±0.11
FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence
CowMix (WRN-28-96x2d)
23.07±0.30
Milking CowMask for Semi-Supervised Image Classification
EnAET (WRN-28-2-Large)
22.92
EnAET: A Self-Trained framework for Semi-Supervised and Supervised Learning with Ensemble Transformations
FixMatch (RA, WRN-28-8)
22.6
FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence
DP-SSL
22.24±0.31
DP-SSL: Towards Robust Semi-supervised Learning with A Few Labeled Samples
-
LaplaceNet (WRN-28-8)
22.11± 0.23
LaplaceNet: A Hybrid Graph-Energy Neural Network for Deep Semi-Supervised Classification
Dash (RA, WRN-28-8)
21.97±0.14
Dash: Semi-Supervised Learning with Dynamic Thresholding
-
FlexMatch
21.90±0.15
FlexMatch: Boosting Semi-Supervised Learning with Curriculum Pseudo Labeling
SimPLE (WRN-28-8)
21.89
SimPLE: Similar Pseudo Label Exploitation for Semi-Supervised Classification
SMPL (WRN-28-8)
21.68
Self Meta Pseudo Labels: Meta Pseudo Labels Without The Teacher
-
0 of 27 row(s) selected.
Previous
Next
Semi Supervised Image Classification On Cifar 2 | SOTA | HyperAI超神经