HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
少样本三维点云分类
Few Shot 3D Point Cloud Classification On 2
Few Shot 3D Point Cloud Classification On 2
评估指标
Overall Accuracy
Standard Deviation
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Overall Accuracy
Standard Deviation
Paper Title
Repository
ReCon++
99.5
0.8
ShapeLLM: Universal 3D Object Understanding for Embodied Interaction
Point-JEPA
99.2
0.8
Point-JEPA: A Joint Embedding Predictive Architecture for Self-Supervised Learning on Point Cloud
PCP-MAE
99.1
0.8
PCP-MAE: Learning to Predict Centers for Point Masked Autoencoders
PointGPT
99.0
1.0
PointGPT: Auto-regressively Generative Pre-training from Point Clouds
ReCon
98.9
1.2
Contrast with Reconstruct: Contrastive 3D Representation Learning Guided by Generative Pretraining
3D-JEPA
98.8
0.4
3D-JEPA: A Joint Embedding Predictive Architecture for 3D Self-Supervised Representation Learning
-
point2vec
98.7
1.2
Point2Vec for Self-Supervised Representation Learning on Point Clouds
Point-RAE
98.7
1.3
Regress Before Construct: Regress Autoencoder for Point Cloud Self-supervised Learning
OTMae3D
98.7
1.2
-
-
Point-M2AE
98.3
1.4
Point-M2AE: Multi-scale Masked Autoencoders for Hierarchical Point Cloud Pre-training
I2P-MAE
98.3
1.3
Learning 3D Representations from 2D Pre-trained Models via Image-to-Point Masked Autoencoders
Point-LGMask
98.1
1.4
Point-LGMask: Local and Global Contexts Embedding for Point Cloud Pre-training with Multi-Ratio Masking
-
ACT
98.0
1.4
Autoencoders as Cross-Modal Teachers: Can Pretrained 2D Image Transformers Help 3D Representation Learning?
IDPT
97.9
-
Instance-aware Dynamic Prompt Tuning for Pre-trained Point Cloud Models
Point-MAE
97.8
1.8
Masked Autoencoders for Point Cloud Self-supervised Learning
MaskPoint
97.2
1.7
Masked Discrimination for Self-Supervised Learning on Point Clouds
CrossMoCo
96.8
1.7
CrossMoCo: Multi-modal Momentum Contrastive Learning for Point Cloud
-
Point-BERT
96.3
2.7
Point-BERT: Pre-training 3D Point Cloud Transformers with Masked Point Modeling
OcCo+DGCNN
92.5
1.9
Unsupervised Point Cloud Pre-Training via Occlusion Completion
OcCo+PointNet
92.4
1.6
Unsupervised Point Cloud Pre-Training via Occlusion Completion
0 of 30 row(s) selected.
Previous
Next
Few Shot 3D Point Cloud Classification On 2 | SOTA | HyperAI超神经