HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
推荐系统
Collaborative Filtering On Movielens 100K
Collaborative Filtering On Movielens 100K
评估指标
Precision
RMSE (u1 Splits)
Recall
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Precision
RMSE (u1 Splits)
Recall
Paper Title
Repository
GMC
-
0.996
-
Matrix Completion on Graphs
GRALS
-
0.945
-
Collaborative Filtering with Graph Information: Consistency and Scalable Methods
-
sRGCNN
-
0.929
-
Geometric Matrix Completion with Recurrent Multi-Graph Neural Networks
WMLFF
-
0.928
-
Weighted Multi-Level Feature Factorization for App ads CTR and installation prediction
Factorized EAE
-
0.920
-
Deep Models of Interactions Across Sets
GRAEM / KPMF
-
0.9174
-
Scalable Probabilistic Matrix Factorization with Graph-Based Priors
Self-Supervised Exchangeable Model
-
0.91
-
Deep Models of Interactions Across Sets
GC-MC
-
0.910
-
Graph Convolutional Matrix Completion
IGMC
-
0.905
-
Inductive Matrix Completion Based on Graph Neural Networks
GC-MC
-
0.905
-
Graph Convolutional Matrix Completion
GraphRec
-
0.904
-
Attribute-aware non-linear co-embeddings of graph features
-
GraphRec + Feat
-
0.897
-
Attribute-aware non-linear co-embeddings of graph features
-
MG-GAT
-
0.890
-
Interpretable Recommender System With Heterogeneous Information: A Geometric Deep Learning Perspective
-
GLocal-K
-
0.8889
-
GLocal-K: Global and Local Kernels for Recommender Systems
GHRS
0.771
0.887
0.799
GHRS: Graph-based Hybrid Recommendation System with Application to Movie Recommendation
FedGNN
-
-
-
FedGNN: Federated Graph Neural Network for Privacy-Preserving Recommendation
-
FedPerGNN
-
-
-
A federated graph neural network framework for privacy-preserving personalization
-
0 of 17 row(s) selected.
Previous
Next
Collaborative Filtering On Movielens 100K | SOTA | HyperAI超神经