Command Palette
Search for a command to run...
Yiming Cui; Zhipeng Chen; Si Wei; Shijin Wang; Ting Liu; Guoping Hu

Abstract
Cloze-style queries are representative problems in reading comprehension. Over the past few months, we have seen much progress that utilizing neural network approach to solve Cloze-style questions. In this paper, we present a novel model called attention-over-attention reader for the Cloze-style reading comprehension task. Our model aims to place another attention mechanism over the document-level attention, and induces "attended attention" for final predictions. Unlike the previous works, our neural network model requires less pre-defined hyper-parameters and uses an elegant architecture for modeling. Experimental results show that the proposed attention-over-attention model significantly outperforms various state-of-the-art systems by a large margin in public datasets, such as CNN and Children's Book Test datasets.
Code Repositories
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| question-answering-on-childrens-book-test | AoA reader | Accuracy-CN: 69.4% Accuracy-NE: 72% |
| question-answering-on-cnn-daily-mail | AoA Reader | CNN: 74.4 |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.