| document-classification-on-cora | GAT | |
| graph-classification-on-cifar10-100k | GAT | |
| graph-classification-on-dd | GAT | |
| graph-classification-on-enzymes | GAT | |
| graph-classification-on-imdb-b | GAT | |
| graph-classification-on-nci1 | GAT | |
| graph-classification-on-nci109 | GAT | |
| graph-classification-on-proteins | GAT | |
| graph-property-prediction-on-ogbg-code2 | GAT | Ext. data: No Number of params: 11030210 Test F1 score: 0.1569 ± 0.0010 Validation F1 score: 0.1442 ± 0.0017 |
| graph-regression-on-esr2 | GAT | R2: 0.666±0.000 RMSE: 0.510±0.666 |
| graph-regression-on-f2 | GAT | R2: 0.886±0.000 RMSE: 0.343±0.886 |
| graph-regression-on-kit | GAT | R2: 0.833±0.000 RMSE: 0.443±0.833 |
| graph-regression-on-lipophilicity | GAT | R2: 0.820±0.014 RMSE: 0.536±0.020 |
| graph-regression-on-lipophilicity-1 | GAT | |
| graph-regression-on-parp1 | GAT | R2: 0.921±0.000 RMSE: 0.353±0.921 |
| graph-regression-on-pgr | GAT | R2: 0.681±0.000 RMSE: 0.546±0.681 |
| graph-regression-on-zinc-100k | GAT | |
| graph-regression-on-zinc-full | GAT | |
| heterogeneous-node-classification-on-acm | GAT | Macro-F1: 92.26 Micro-F1: 92.19 |
| heterogeneous-node-classification-on-dblp-2 | GAT | Macro-F1: 93.83 Micro-F1: 93.39 |
| heterogeneous-node-classification-on-freebase | GAT | Accuracy: 65.26 Macro-F1: 40.74 |
| heterogeneous-node-classification-on-imdb | GAT | Macro-F1: 58.94 Micro-F1: 64.86 |
| molecular-property-prediction-on-esol | GAT | R2: 0.930±0.007 RMSE: 0.540±0.027 |
| molecular-property-prediction-on-freesolv | GAT | R2: 0.959±0.011 RMSE: 0.791±0.101 |
| node-classification-on-brazil-air-traffic | GAT (Velickovic et al., 2018) | |
| node-classification-on-chameleon-60-20-20 | GAT | 1:1 Accuracy: 63.9 ± 0.46 |
| node-classification-on-citeseer | GAT | Accuracy: 72.5 ± 0.7% Training Split: fixed 20 per node Validation: YES |
| node-classification-on-citeseer-05 | GAT | |
| node-classification-on-citeseer-1 | GAT | |
| node-classification-on-citeseer-60-20-20 | GAT | 1:1 Accuracy: 67.20 ± 0.46 |
| node-classification-on-citeseer-with-public | GAT | |
| node-classification-on-cora | GAT | Accuracy: 83.0% ± 0.7% Training Split: fixed 20 per node Validation: YES |
| node-classification-on-cora-05 | GAT | |
| node-classification-on-cora-1 | GAT | |
| node-classification-on-cora-3 | GAT | |
| node-classification-on-cora-60-20-20-random | GAT | 1:1 Accuracy: 76.70 ± 0.42 |
| node-classification-on-cora-with-public-split | GAT | |
| node-classification-on-cornell-60-20-20 | GAT | 1:1 Accuracy: 76.00 ± 1.01 |
| node-classification-on-europe-air-traffic | GAT (Velickovic et al., 2018) | |
| node-classification-on-film-60-20-20-random | GAT | 1:1 Accuracy: 35.98 ± 0.23 |
| node-classification-on-flickr | GAT (Velickovic et al., 2018) | |
| node-classification-on-genius | GAT | |
| node-classification-on-non-homophilic | GAT | 1:1 Accuracy: 76.00 ± 1.01 |
| node-classification-on-non-homophilic-1 | GAT | 1:1 Accuracy: 71.01 ± 4.66 |
| node-classification-on-non-homophilic-13 | GAT | 1:1 Accuracy: 81.53 ± 0.55 |
| node-classification-on-non-homophilic-16 | GAT | F1-Score: 59.89 ± 4.12 NMI: 55.80 ± 0.87 |
| node-classification-on-non-homophilic-2 | GAT | 1:1 Accuracy: 78.87 ± 0.86 |
| node-classification-on-non-homophilic-4 | GAT | 1:1 Accuracy: 63.9 ± 0.46 |
| node-classification-on-non-homophilic-6 | GAT | |
| node-classification-on-pattern-100k | GAT | |
| node-classification-on-penn94 | GAT | |
| node-classification-on-ppi | GAT | |
| node-classification-on-pubmed | GAT | Accuracy: 79.0 ± 0.3% F1-Score: 79.0 Training Split: fixed 20 per node Validation: YES |
| node-classification-on-pubmed-003 | GAT | |
| node-classification-on-pubmed-005 | GAT | |
| node-classification-on-pubmed-01 | GAT | |
| node-classification-on-pubmed-60-20-20-random | GAT | 1:1 Accuracy: 83.28 ± 0.12 |
| node-classification-on-pubmed-with-public | GAT | |
| node-classification-on-squirrel-60-20-20 | GAT | 1:1 Accuracy: 42.72 ± 0.33 |
| node-classification-on-texas-60-20-20-random | GAT | 1:1 Accuracy: 78.87 ± 0.86 |
| node-classification-on-usa-air-traffic | GAT (Velickovic et al., 2018) | |
| node-classification-on-wiki-vote | GAT (Velickovic et al., 2018) | |
| node-classification-on-wisconsin-60-20-20 | GAT | 1:1 Accuracy: 71.01 ± 4.66 |
| skeleton-based-action-recognition-on-j-hmbd | GAT | |