Command Palette
Search for a command to run...
Myle Ott; Sergey Edunov; David Grangier; Michael Auli

Abstract
Sequence to sequence learning models still require several days to reach state of the art performance on large benchmark datasets using a single machine. This paper shows that reduced precision and large batch training can speedup training by nearly 5x on a single 8-GPU machine with careful tuning and implementation. On WMT'14 English-German translation, we match the accuracy of Vaswani et al. (2017) in under 5 hours when training on 8 GPUs and we obtain a new state of the art of 29.3 BLEU after training for 85 minutes on 128 GPUs. We further improve these results to 29.8 BLEU by training on the much larger Paracrawl dataset. On the WMT'14 English-French task, we obtain a state-of-the-art BLEU of 43.2 in 8.5 hours on 128 GPUs.
Code Repositories
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| machine-translation-on-wmt2014-english-french | Transformer Big | BLEU score: 43.2 Hardware Burden: 55G Operations per network pass: |
| machine-translation-on-wmt2014-english-german | Transformer Big | BLEU score: 29.3 Hardware Burden: 9G Number of Params: 210M Operations per network pass: |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.