Command Palette
Search for a command to run...
Cooperative Learning of Audio and Video Models from Self-Supervised Synchronization
Bruno Korbar; Du Tran; Lorenzo Torresani

Abstract
There is a natural correlation between the visual and auditive elements of a video. In this work we leverage this connection to learn general and effective models for both audio and video analysis from self-supervised temporal synchronization. We demonstrate that a calibrated curriculum learning scheme, a careful choice of negative examples, and the use of a contrastive loss are critical ingredients to obtain powerful multi-sensory representations from models optimized to discern temporal synchronization of audio-video pairs. Without further finetuning, the resulting audio features achieve performance superior or comparable to the state-of-the-art on established audio classification benchmarks (DCASE2014 and ESC-50). At the same time, our visual subnet provides a very effective initialization to improve the accuracy of video-based action recognition models: compared to learning from scratch, our self-supervised pretraining yields a remarkable gain of +19.9% in action recognition accuracy on UCF101 and a boost of +17.7% on HMDB51.
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| audio-classification-on-esc-50 | AVTS | Top-1 Accuracy: 82.3 |
| self-supervised-action-recognition-on-hmdb51-1 | AVTS | Top-1 Accuracy: 61.6 |
| self-supervised-action-recognition-on-ucf101-1 | AVTS | 3-fold Accuracy: 89.0 |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.