HyperAIHyperAI

Command Palette

Search for a command to run...

4 months ago

Large-Scale Visual Speech Recognition

Brendan Shillingford; Yannis Assael; Matthew W. Hoffman; Thomas Paine; Cían Hughes; Utsav Prabhu; Hank Liao; Hasim Sak; Kanishka Rao; Lorrayne Bennett; Marie Mulville; Ben Coppin; Ben Laurie; Andrew Senior; Nando de Freitas

Large-Scale Visual Speech Recognition

Abstract

This work presents a scalable solution to open-vocabulary visual speech recognition. To achieve this, we constructed the largest existing visual speech recognition dataset, consisting of pairs of text and video clips of faces speaking (3,886 hours of video). In tandem, we designed and trained an integrated lipreading system, consisting of a video processing pipeline that maps raw video to stable videos of lips and sequences of phonemes, a scalable deep neural network that maps the lip videos to sequences of phoneme distributions, and a production-level speech decoder that outputs sequences of words. The proposed system achieves a word error rate (WER) of 40.9% as measured on a held-out set. In comparison, professional lipreaders achieve either 86.4% or 92.9% WER on the same dataset when having access to additional types of contextual information. Our approach significantly improves on other lipreading approaches, including variants of LipNet and of Watch, Attend, and Spell (WAS), which are only capable of 89.8% and 76.8% WER respectively.

Benchmarks

BenchmarkMethodologyMetrics
lipreading-on-lrs3-tedCTC-V2P
Word Error Rate (WER): 55.1

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Large-Scale Visual Speech Recognition | Papers | HyperAI