HyperAIHyperAI

Command Palette

Search for a command to run...

4 months ago

QTRAN: Learning to Factorize with Transformation for Cooperative Multi-Agent Reinforcement Learning

Kyunghwan Son; Daewoo Kim; Wan Ju Kang; David Earl Hostallero; Yung Yi

QTRAN: Learning to Factorize with Transformation for Cooperative Multi-Agent Reinforcement Learning

Abstract

We explore value-based solutions for multi-agent reinforcement learning (MARL) tasks in the centralized training with decentralized execution (CTDE) regime popularized recently. However, VDN and QMIX are representative examples that use the idea of factorization of the joint action-value function into individual ones for decentralized execution. VDN and QMIX address only a fraction of factorizable MARL tasks due to their structural constraint in factorization such as additivity and monotonicity. In this paper, we propose a new factorization method for MARL, QTRAN, which is free from such structural constraints and takes on a new approach to transforming the original joint action-value function into an easily factorizable one, with the same optimal actions. QTRAN guarantees more general factorization than VDN or QMIX, thus covering a much wider class of MARL tasks than does previous methods. Our experiments for the tasks of multi-domain Gaussian-squeeze and modified predator-prey demonstrate QTRAN's superior performance with especially larger margins in games whose payoffs penalize non-cooperative behavior more aggressively.

Code Repositories

hhhusiyi-monash/UPDeT
pytorch
Mentioned in GitHub
jugg1er/air
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
smac-on-smac-def-armored-parallelQTRAN
Median Win Rate: 5.0
smac-on-smac-def-armored-sequentialQTRAN
Median Win Rate: 93.8
smac-on-smac-def-infantry-parallelQTRAN
Median Win Rate: 100.0
smac-on-smac-def-infantry-sequentialQTRAN
Median Win Rate: 100
smac-on-smac-def-outnumbered-parallelQTRAN
Median Win Rate: 0.0
smac-on-smac-def-outnumbered-sequentialQTRAN
Median Win Rate: 81.3
smac-on-smac-off-complicated-parallelQTRAN
Median Win Rate: 0.0
smac-on-smac-off-distant-parallelQTRAN
Median Win Rate: 0.0
smac-on-smac-off-hard-parallelQTRAN
Median Win Rate: 0.0
smac-on-smac-off-near-parallelQTRAN
Median Win Rate: 0.0
smac-on-smac-off-superhard-parallelQTRAN
Median Win Rate: 0.0

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
QTRAN: Learning to Factorize with Transformation for Cooperative Multi-Agent Reinforcement Learning | Papers | HyperAI