Command Palette
Search for a command to run...
ODE$^2$VAE: Deep generative second order ODEs with Bayesian neural networks
Çağatay Yıldız; Markus Heinonen; Harri Lähdesmäki

Abstract
We present Ordinary Differential Equation Variational Auto-Encoder (ODE$^2$VAE), a latent second order ODE model for high-dimensional sequential data. Leveraging the advances in deep generative models, ODE$^2$VAE can simultaneously learn the embedding of high dimensional trajectories and infer arbitrarily complex continuous-time latent dynamics. Our model explicitly decomposes the latent space into momentum and position components and solves a second order ODE system, which is in contrast to recurrent neural network (RNN) based time series models and recently proposed black-box ODE techniques. In order to account for uncertainty, we propose probabilistic latent ODE dynamics parameterized by deep Bayesian neural networks. We demonstrate our approach on motion capture, image rotation and bouncing balls datasets. We achieve state-of-the-art performance in long term motion prediction and imputation tasks.
Code Repositories
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| video-prediction-on-cmu-mocap-1 | ODE2VAE | Test Error: 93.07 |
| video-prediction-on-cmu-mocap-1 | ODE2VAE-KL | Test Error: 15.99 |
| video-prediction-on-cmu-mocap-2 | ODE2VAE-KL | Test Error: 8.09 |
| video-prediction-on-cmu-mocap-2 | ODE2VAE | Test Error: 10.06 |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.