HyperAIHyperAI

Command Palette

Search for a command to run...

4 months ago

Diverse Trajectory Forecasting with Determinantal Point Processes

Ye Yuan; Kris Kitani

Diverse Trajectory Forecasting with Determinantal Point Processes

Abstract

The ability to forecast a set of likely yet diverse possible future behaviors of an agent (e.g., future trajectories of a pedestrian) is essential for safety-critical perception systems (e.g., autonomous vehicles). In particular, a set of possible future behaviors generated by the system must be diverse to account for all possible outcomes in order to take necessary safety precautions. It is not sufficient to maintain a set of the most likely future outcomes because the set may only contain perturbations of a single outcome. While generative models such as variational autoencoders (VAEs) have been shown to be a powerful tool for learning a distribution over future trajectories, randomly drawn samples from the learned implicit likelihood model may not be diverse -- the likelihood model is derived from the training data distribution and the samples will concentrate around the major mode that has most data. In this work, we propose to learn a diversity sampling function (DSF) that generates a diverse and likely set of future trajectories. The DSF maps forecasting context features to a set of latent codes which can be decoded by a generative model (e.g., VAE) into a set of diverse trajectory samples. Concretely, the process of identifying the diverse set of samples is posed as a parameter estimation of the DSF. To learn the parameters of the DSF, the diversity of the trajectory samples is evaluated by a diversity loss based on a determinantal point process (DPP). Gradient descent is performed over the DSF parameters, which in turn move the latent codes of the sample set to find an optimal diverse and likely set of trajectories. Our method is a novel application of DPPs to optimize a set of items (trajectories) in continuous space. We demonstrate the diversity of the trajectories produced by our approach on both low-dimensional 2D trajectory data and high-dimensional human motion data.

Benchmarks

BenchmarkMethodologyMetrics
human-pose-forecasting-on-human36mDSF
ADE: 493
APD: 9330
FDE: 592
MMADE: 550
MMFDE: 599
human-pose-forecasting-on-humaneva-iDSF
ADE@2000ms: 273
APD@2000ms: 4538
FDE@2000ms: 290

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Diverse Trajectory Forecasting with Determinantal Point Processes | Papers | HyperAI