HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Segmentation Transformer: Object-Contextual Representations for Semantic Segmentation

Yuhui Yuan Xiaokang Chen Xilin Chen Jingdong Wang

Segmentation Transformer: Object-Contextual Representations for Semantic Segmentation

Abstract

In this paper, we address the semantic segmentation problem with a focus on the context aggregation strategy. Our motivation is that the label of a pixel is the category of the object that the pixel belongs to. We present a simple yet effective approach, object-contextual representations, characterizing a pixel by exploiting the representation of the corresponding object class. First, we learn object regions under the supervision of ground-truth segmentation. Second, we compute the object region representation by aggregating the representations of the pixels lying in the object region. Last, % the representation similarity we compute the relation between each pixel and each object region and augment the representation of each pixel with the object-contextual representation which is a weighted aggregation of all the object region representations according to their relations with the pixel. We empirically demonstrate that the proposed approach achieves competitive performance on various challenging semantic segmentation benchmarks: Cityscapes, ADE20K, LIP, PASCAL-Context, and COCO-Stuff. Cityscapes, ADE20K, LIP, PASCAL-Context, and COCO-Stuff. Our submission "HRNet + OCR + SegFix" achieves 1-st place on the Cityscapes leaderboard by the time of submission. Code is available at: https://git.io/openseg and https://git.io/HRNet.OCR. We rephrase the object-contextual representation scheme using the Transformer encoder-decoder framework. The details are presented in~Section3.3.

Benchmarks

BenchmarkMethodologyMetrics
semantic-segmentation-on-ade20kOCR (ResNet-101)
Validation mIoU: 45.28
semantic-segmentation-on-ade20kHRNetV2 + OCR + RMI (PaddleClas pretrained)
Validation mIoU: 47.98
semantic-segmentation-on-ade20kOCR(HRNetV2-W48)
Validation mIoU: 45.66
semantic-segmentation-on-ade20k-valOCR (ResNet-101)
mIoU: 45.28
semantic-segmentation-on-ade20k-valOCR (HRNetV2-W48)
mIoU: 45.66
semantic-segmentation-on-ade20k-valHRNetV2 + OCR + RMI (PaddleClas pretrained)
mIoU: 47.98
semantic-segmentation-on-bdd100k-valOCRNet
mIoU: 60.1
semantic-segmentation-on-cityscapesHRNetV2 + OCR (w/ ASP)
Mean IoU (class): 83.7%
semantic-segmentation-on-cityscapesOCR (ResNet-101, coarse)
Mean IoU (class): 82.4%
semantic-segmentation-on-cityscapesOCR (HRNetV2-W48, coarse)
Mean IoU (class): 83.0%
semantic-segmentation-on-cityscapesOCR (ResNet-101)
Mean IoU (class): 81.8%
semantic-segmentation-on-cityscapesHRNetV2 + OCR +
Mean IoU (class): 84.5%
semantic-segmentation-on-cityscapes-valHRNetV2 + OCR + RMI (PaddleClas pretrained)
mIoU: 83.6
semantic-segmentation-on-cityscapes-valOCR (ResNet-101-FCN)
mIoU: 80.6
semantic-segmentation-on-coco-stuff-testOCR (ResNet-101)
mIoU: 39.5%
semantic-segmentation-on-coco-stuff-testOCR (HRNetV2-W48)
mIoU: 40.5%
semantic-segmentation-on-coco-stuff-testHRNetV2 + OCR + RMI (PaddleClas pretrained)
mIoU: 45.2%
semantic-segmentation-on-lip-valHRNetV2 + OCR + RMI (PaddleClas pretrained)
mIoU: 58.2%
semantic-segmentation-on-lip-valOCR (ResNet-101)
mIoU: 55.6%
semantic-segmentation-on-lip-valOCR (HRNetV2-W48)
mIoU: 56.65%
semantic-segmentation-on-pascal-contextOCR (HRNetV2-W48)
mIoU: 56.2
semantic-segmentation-on-pascal-contextHRNetV2 + OCR + RMI (PaddleClas pretrained)
mIoU: 59.6
semantic-segmentation-on-pascal-contextOCR (ResNet-101)
mIoU: 54.8
semantic-segmentation-on-pascal-voc-2012OCR (ResNet-101)
Mean IoU: 84.3%
semantic-segmentation-on-pascal-voc-2012OCR (HRNetV2-W48)
Mean IoU: 84.5%

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp