HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Self-supervised Knowledge Distillation for Few-shot Learning

Jathushan Rajasegaran Salman Khan Munawar Hayat Fahad Shahbaz Khan Mubarak Shah

Self-supervised Knowledge Distillation for Few-shot Learning

Abstract

Real-world contains an overwhelmingly large number of object classes, learning all of which at once is infeasible. Few shot learning is a promising learning paradigm due to its ability to learn out of order distributions quickly with only a few samples. Recent works [7, 41] show that simply learning a good feature embedding can outperform more sophisticated meta-learning and metric learning algorithms for few-shot learning. In this paper, we propose a simple approach to improve the representation capacity of deep neural networks for few-shot learning tasks. We follow a two-stage learning process: First, we train a neural network to maximize the entropy of the feature embedding, thus creating an optimal output manifold using a self-supervised auxiliary loss. In the second stage, we minimize the entropy on feature embedding by bringing self-supervised twins together, while constraining the manifold with student-teacher distillation. Our experiments show that, even in the first stage, self-supervision can outperform current state-of-the-art methods, with further gains achieved by our second stage distillation process. Our codes are available at: https://github.com/brjathu/SKD.

Code Repositories

yiren-jian/embedding-learning-fsl
pytorch
Mentioned in GitHub
brjathu/SKD
Official
pytorch
Mentioned in GitHub

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Self-supervised Knowledge Distillation for Few-shot Learning | Papers | HyperAI