HyperAIHyperAI

Command Palette

Search for a command to run...

5 months ago

Uncertainty Inspired RGB-D Saliency Detection

Jing Zhang; Deng-Ping Fan; Yuchao Dai; Saeed Anwar; Fatemeh Saleh; Sadegh Aliakbarian; Nick Barnes

Uncertainty Inspired RGB-D Saliency Detection

Abstract

We propose the first stochastic framework to employ uncertainty for RGB-D saliency detection by learning from the data labeling process. Existing RGB-D saliency detection models treat this task as a point estimation problem by predicting a single saliency map following a deterministic learning pipeline. We argue that, however, the deterministic solution is relatively ill-posed. Inspired by the saliency data labeling process, we propose a generative architecture to achieve probabilistic RGB-D saliency detection which utilizes a latent variable to model the labeling variations. Our framework includes two main models: 1) a generator model, which maps the input image and latent variable to stochastic saliency prediction, and 2) an inference model, which gradually updates the latent variable by sampling it from the true or approximate posterior distribution. The generator model is an encoder-decoder saliency network. To infer the latent variable, we introduce two different solutions: i) a Conditional Variational Auto-encoder with an extra encoder to approximate the posterior distribution of the latent variable; and ii) an Alternating Back-Propagation technique, which directly samples the latent variable from the true posterior distribution. Qualitative and quantitative results on six challenging RGB-D benchmark datasets show our approach's superior performance in learning the distribution of saliency maps. The source code is publicly available via our project page: https://github.com/JingZhang617/UCNet.

Code Repositories

JingZhang617/UCNet
Official
pytorch
Mentioned in GitHub
DengPingFan/SOC-DataAug
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
rgb-d-salient-object-detection-on-desUCNet-ABP
Average MAE: 0.016
S-Measure: 94.0
rgb-d-salient-object-detection-on-desUCNet-CVAE
Average MAE: 0.016
S-Measure: 93.7
rgb-d-salient-object-detection-on-lfsdUCNet-ABP
Average MAE: 0.065
S-Measure: 86.6
rgb-d-salient-object-detection-on-lfsdUCNet-CVAE
Average MAE: 0.065
S-Measure: 86.8
rgb-d-salient-object-detection-on-nju2kUCNet-CVAE
Average MAE: 0.039
S-Measure: 90.2
rgb-d-salient-object-detection-on-nju2kUCNet-ABP
Average MAE: 0.039
S-Measure: 90.0
rgb-d-salient-object-detection-on-nlprUCNet-CAVE
Average MAE: 0.025
S-Measure: 91.7
rgb-d-salient-object-detection-on-nlprUCNet-ABP
Average MAE: 0.024
S-Measure: 91.9
rgb-d-salient-object-detection-on-sipUCNet-CVAE
Average MAE: 0.045
S-Measure: 88.3
rgb-d-salient-object-detection-on-sipUCNet-ABP
Average MAE: 0.049
S-Measure: 87.6
rgb-d-salient-object-detection-on-stereUCNet-CVAE
Average MAE: 0.039
S-Measure: 89.8
rgb-d-salient-object-detection-on-stereUCNet-ABP
Average MAE: 0.037
S-Measure: 90.4
salient-object-detection-on-dut-omronUCNet-ABP
MAE: 0.050
S-Measure: 0.843
salient-object-detection-on-dut-omronUCNet-CVAE
MAE: 0.051
S-Measure: 0.839
salient-object-detection-on-duts-teUCNet-CVAE
MAE: 0.034
S-Measure: 0.888
mean E-Measure: 0.927
mean F-Measure: 0.860
salient-object-detection-on-duts-teUCNet-ABP
MAE: 0.034
S-Measure: 0.890
mean E-Measure: 0.931
mean F-Measure: 0.864
salient-object-detection-on-ecssdUCNet-CVAE
MAE: 0.035
S-Measure: 0.921
salient-object-detection-on-hku-isUCNet-CVAE
MAE: 0.026
S-Measure: 0.921
salient-object-detection-on-hku-isUCNet-ABP
MAE: 0.027
S-Measure: 0.917
salient-object-detection-on-socUCNet-APB
Average MAE: 0.091
S-Measure: 0.842
mean E-Measure: 0.868
salient-object-detection-on-socUCNet-CVAE
Average MAE: 0.089
S-Measure: 0.849
mean E-Measure: 0.872

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Uncertainty Inspired RGB-D Saliency Detection | Papers | HyperAI