HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Parametric UMAP embeddings for representation and semi-supervised learning

Tim Sainburg Leland McInnes Timothy Q Gentner

Parametric UMAP embeddings for representation and semi-supervised learning

Abstract

UMAP is a non-parametric graph-based dimensionality reduction algorithm using applied Riemannian geometry and algebraic topology to find low-dimensional embeddings of structured data. The UMAP algorithm consists of two steps: (1) Compute a graphical representation of a dataset (fuzzy simplicial complex), and (2) Through stochastic gradient descent, optimize a low-dimensional embedding of the graph. Here, we extend the second step of UMAP to a parametric optimization over neural network weights, learning a parametric relationship between data and embedding. We first demonstrate that Parametric UMAP performs comparably to its non-parametric counterpart while conferring the benefit of a learned parametric mapping (e.g. fast online embeddings for new data). We then explore UMAP as a regularization, constraining the latent distribution of autoencoders, parametrically varying global structure preservation, and improving classifier accuracy for semi-supervised learning by capturing structure in unlabeled data. Google Colab walkthrough: https://colab.research.google.com/drive/1WkXVZ5pnMrm17m0YgmtoNjM_XHdnE5Vp?usp=sharing

Code Repositories

Benchmarks

BenchmarkMethodologyMetrics
dimensionality-reduction-on-mcaIVIS
Classification Accuracy: 46.6

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Parametric UMAP embeddings for representation and semi-supervised learning | Papers | HyperAI