Command Palette
Search for a command to run...
Yin Wei ; Zhang Jianming ; Wang Oliver ; Niklaus Simon ; Mai Long ; Chen Simon ; Shen Chunhua

Abstract
Despite significant progress in monocular depth estimation in the wild,recent state-of-the-art methods cannot be used to recover accurate 3D sceneshape due to an unknown depth shift induced by shift-invariant reconstructionlosses used in mixed-data depth prediction training, and possible unknowncamera focal length. We investigate this problem in detail, and propose atwo-stage framework that first predicts depth up to an unknown scale and shiftfrom a single monocular image, and then use 3D point cloud encoders to predictthe missing depth shift and focal length that allow us to recover a realistic3D scene shape. In addition, we propose an image-level normalized regressionloss and a normal-based geometry loss to enhance depth prediction modelstrained on mixed datasets. We test our depth model on nine unseen datasets andachieve state-of-the-art performance on zero-shot dataset generalization. Codeis available at: https://git.io/Depth
Code Repositories
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| depth-estimation-on-diode | LeRes | Delta u003c 1.25: 0.234 |
| depth-estimation-on-scannetv2 | LeReS | absolute relative error: 0.095 |
| indoor-monocular-depth-estimation-on-diode | LeReS | Delta u003c 1.25^3: 0.900 |
| monocular-depth-estimation-on-eth3d | LeReS | Delta u003c 1.25: 0.0777 absolute relative error: 0.0171 |
| monocular-depth-estimation-on-kitti-eigen | LeReS | Delta u003c 1.25: 0.784 absolute relative error: 0.149 |
| monocular-depth-estimation-on-nyu-depth-v2 | LeReS | Delta u003c 1.25: 0.916 absolute relative error: 0.09 |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.