HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval

Huaishao Luo Lei Ji Ming Zhong Yang Chen Wen Lei Nan Duan Tianrui Li

CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval

Abstract

Video-text retrieval plays an essential role in multi-modal research and has been widely used in many real-world web applications. The CLIP (Contrastive Language-Image Pre-training), an image-language pre-training model, has demonstrated the power of visual concepts learning from web collected image-text datasets. In this paper, we propose a CLIP4Clip model to transfer the knowledge of the CLIP model to video-language retrieval in an end-to-end manner. Several questions are investigated via empirical studies: 1) Whether image feature is enough for video-text retrieval? 2) How a post-pretraining on a large-scale video-text dataset based on the CLIP affect the performance? 3) What is the practical mechanism to model temporal dependency between video frames? And 4) The Hyper-parameters sensitivity of the model on video-text retrieval task. Extensive experimental results present that the CLIP4Clip model transferred from the CLIP can achieve SOTA results on various video-text retrieval datasets, including MSR-VTT, MSVC, LSMDC, ActivityNet, and DiDeMo. We release our code at https://github.com/ArrowLuo/CLIP4Clip.

Code Repositories

ArrowLuo/CLIP4Clip
Official
pytorch
Mentioned in GitHub
facebookresearch/EgoTV
pytorch
Mentioned in GitHub
roudimit/AVLnet
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
text-to-video-retrieval-on-msr-vttCLIP4Clip
text-to-video R@1: 44.5
video-retrieval-on-activitynetCLIP4Clip
text-to-video Mean Rank: 7.5
text-to-video Median Rank: 2
text-to-video R@1: 40.5
text-to-video R@5: 73.4
text-to-video R@50: 98.2
video-retrieval-on-didemoCLIP4Clip
text-to-video Mean Rank: 17.5
text-to-video Median Rank: 2.0
text-to-video R@1: 43.4
text-to-video R@10: 80.6
text-to-video R@5: 70.2
video-retrieval-on-lsmdcCLIP4Clip
text-to-video Mean Rank: 58.0
text-to-video R@1: 21.6
text-to-video R@10: 49.8
text-to-video R@5: 41.8
video-retrieval-on-msr-vttCLIP4Clip-seqTransf
text-to-video R@1: 44.5
text-to-video R@10: 81.6
text-to-video R@5: 71.4
video-retrieval-on-msr-vtt-1kaCLIP4Clip
text-to-video Mean Rank: 15.3
text-to-video Median Rank: 2
text-to-video R@10: 81.6
video-to-text Median Rank: 2
video-to-text R@1: 42.7
video-to-text R@10: 80.6
video-to-text R@5: 70.9
video-retrieval-on-msvdCLIP4Clip
text-to-video Mean Rank: 10.0
text-to-video Median Rank: 2
text-to-video R@1: 46.2
text-to-video R@10: 84.6
text-to-video R@5: 76.1
video-to-text Median Rank: 1
video-to-text R@1: 62.0
video-to-text R@10: 92.6
video-to-text R@5: 87.3
zero-shot-video-retrieval-on-lsmdcCLIP4Clip
text-to-video Mean Rank: 117
text-to-video Median Rank: 28
text-to-video R@1: 15.1
text-to-video R@10: 36.4
text-to-video R@5: 28.5
zero-shot-video-retrieval-on-msr-vttCLIP4Clip
text-to-video Mean Rank: 34.0
text-to-video Median Rank: 4
text-to-video R@1: 32.0
text-to-video R@10: 66.9
text-to-video R@5: 57.0
zero-shot-video-retrieval-on-msvdCLIP4Clip
text-to-video Mean Rank: 17.8
text-to-video Median Rank: 2
text-to-video R@1: 38.5
text-to-video R@10: 76.8
text-to-video R@5: 66.9

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval | Papers | HyperAI