HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Multimodal Representation for Neural Code Search

Jian Gu Zimin Chen Martin Monperrus

Multimodal Representation for Neural Code Search

Abstract

Semantic code search is about finding semantically relevant code snippets for a given natural language query. In the state-of-the-art approaches, the semantic similarity between code and query is quantified as the distance of their representation in the shared vector space. In this paper, to improve the vector space, we introduce tree-serialization methods on a simplified form of AST and build the multimodal representation for the code data. We conduct extensive experiments using a single corpus that is large-scale and multi-language: CodeSearchNet. Our results show that both our tree-serialized representations and multimodal learning model improve the performance of code search. Last, we define intuitive quantification metrics oriented to the completeness of semantic and syntactic information of the code data, to help understand the experimental findings.

Code Repositories

jianguda/mrncs
Official
tf
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
code-search-on-codesearchnet-rubyUni-SBT
MRR: 0.3639

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Multimodal Representation for Neural Code Search | Papers | HyperAI