HyperAIHyperAI

Command Palette

Search for a command to run...

5 months ago

Semantic Role Labeling as Dependency Parsing: Exploring Latent Tree Structures Inside Arguments

Yu Zhang; Qingrong Xia; Shilin Zhou; Yong Jiang; Guohong Fu; Min Zhang

Semantic Role Labeling as Dependency Parsing: Exploring Latent Tree Structures Inside Arguments

Abstract

Semantic role labeling (SRL) is a fundamental yet challenging task in the NLP community. Recent works of SRL mainly fall into two lines: 1) BIO-based; 2) span-based. Despite ubiquity, they share some intrinsic drawbacks of not considering internal argument structures, potentially hindering the model's expressiveness. The key challenge is arguments are flat structures, and there are no determined subtree realizations for words inside arguments. To remedy this, in this paper, we propose to regard flat argument spans as latent subtrees, accordingly reducing SRL to a tree parsing task. In particular, we equip our formulation with a novel span-constrained TreeCRF to make tree structures span-aware and further extend it to the second-order case. We conduct extensive experiments on CoNLL05 and CoNLL12 benchmarks. Results reveal that our methods perform favorably better than all previous syntax-agnostic works, achieving new state-of-the-art under both end-to-end and w/ gold predicates settings.

Code Repositories

yzhangcs/crfsrl
Official
pytorch
Mentioned in GitHub

Benchmarks

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Semantic Role Labeling as Dependency Parsing: Exploring Latent Tree Structures Inside Arguments | Papers | HyperAI