HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

CNN Filter DB: An Empirical Investigation of Trained Convolutional Filters

Paul Gavrikov Janis Keuper

CNN Filter DB: An Empirical Investigation of Trained Convolutional Filters

Abstract

Currently, many theoretical as well as practically relevant questions towards the transferability and robustness of Convolutional Neural Networks (CNNs) remain unsolved. While ongoing research efforts are engaging these problems from various angles, in most computer vision related cases these approaches can be generalized to investigations of the effects of distribution shifts in image data. In this context, we propose to study the shifts in the learned weights of trained CNN models. Here we focus on the properties of the distributions of dominantly used 3x3 convolution filter kernels. We collected and publicly provide a dataset with over 1.4 billion filters from hundreds of trained CNNs, using a wide range of datasets, architectures, and vision tasks. In a first use case of the proposed dataset, we can show highly relevant properties of many publicly available pre-trained models for practical applications: I) We analyze distribution shifts (or the lack thereof) between trained filters along different axes of meta-parameters, like visual category of the dataset, task, architecture, or layer depth. Based on these results, we conclude that model pre-training can succeed on arbitrary datasets if they meet size and variance conditions. II) We show that many pre-trained models contain degenerated filters which make them less robust and less suitable for fine-tuning on target applications. Data & Project website: https://github.com/paulgavrikov/cnn-filter-db

Code Repositories

paulgavrikov/cnn-filter-db
Official
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
image-classification-on-cifar-10ResNet-9
Percentage correct: 94.79
image-classification-on-cifar-100ResNet-9
Percentage correct: 75.59
image-classification-on-fashion-mnistInception v3
Accuracy: 94.44
Percentage error: 5.56
image-classification-on-kuzushiji-mnistResNet-14
Accuracy: 98.75
image-classification-on-mnistResNet-9
Accuracy: 99.68

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
CNN Filter DB: An Empirical Investigation of Trained Convolutional Filters | Papers | HyperAI