HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Long Range Graph Benchmark

Vijay Prakash Dwivedi Ladislav Rampášek Mikhail Galkin Ali Parviz Guy Wolf Anh Tuan Luu Dominique Beaini

Long Range Graph Benchmark

Abstract

Graph Neural Networks (GNNs) that are based on the message passing (MP) paradigm generally exchange information between 1-hop neighbors to build node representations at each layer. In principle, such networks are not able to capture long-range interactions (LRI) that may be desired or necessary for learning a given task on graphs. Recently, there has been an increasing interest in development of Transformer-based methods for graphs that can consider full node connectivity beyond the original sparse structure, thus enabling the modeling of LRI. However, MP-GNNs that simply rely on 1-hop message passing often fare better in several existing graph benchmarks when combined with positional feature representations, among other innovations, hence limiting the perceived utility and ranking of Transformer-like architectures. Here, we present the Long Range Graph Benchmark (LRGB) with 5 graph learning datasets: PascalVOC-SP, COCO-SP, PCQM-Contact, Peptides-func and Peptides-struct that arguably require LRI reasoning to achieve strong performance in a given task. We benchmark both baseline GNNs and Graph Transformer networks to verify that the models which capture long-range dependencies perform significantly better on these tasks. Therefore, these datasets are suitable for benchmarking and exploration of MP-GNNs and Graph Transformer architectures that are intended to capture LRI.

Code Repositories

vijaydwivedi75/lrgb
Official
pytorch
Mentioned in GitHub
zml72062/dr-fwl-2
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
graph-classification-on-peptides-funcGCN
AP: 0.5930±0.0023
graph-classification-on-peptides-funcGINE
AP: 0.5498±0.0079
graph-classification-on-peptides-funcGatedGCN
AP: 0.5864±0.0077
graph-classification-on-peptides-funcTransformer+LapPE
AP: 0.6326±0.0126
graph-classification-on-peptides-funcGatedGCN+RWSE
AP: 0.6069±0.0035
graph-classification-on-peptides-funcSAN+LapPE
AP: 0.6384±0.0121
graph-classification-on-peptides-funcSAN+RWSE
AP: 0.6439±0.0075
graph-regression-on-peptides-structTransformer+LapPE
MAE: 0.2529±0.0016
graph-regression-on-peptides-structSAN+LapPE
MAE: 0.2683±0.0043
graph-regression-on-peptides-structGCN
MAE: 0.3496±0.0013
graph-regression-on-peptides-structGINE
MAE: 0.3547±0.0045
graph-regression-on-peptides-structGatedGCN
MAE: 0.3420±0.0013
graph-regression-on-peptides-structGatedGCN+RWSE
MAE: 0.3357±0.0006
graph-regression-on-peptides-structSAN+RWSE
MAE: 0.2545±0.0012
link-prediction-on-pcqm-contactGCN
Hits@1: 0.1321±0.0007
Hits@10: 0.8256±0.0006
Hits@3: 0.3791±0.0004
MRR: 0.3234±0.0006
link-prediction-on-pcqm-contactSAN+LapPE
Hits@1: 0.1355±0.0017
Hits@10: 0.8478±0.0044
Hits@3: 0.4004±0.0021
MRR: 0.3350±0.0003
link-prediction-on-pcqm-contactTransformer+LapPE
Hits@1: 0.1221±0.0011
Hits@10: 0.8517±0.0039
Hits@3: 0.3679±0.0033
MRR: 0.3174±0.0020
link-prediction-on-pcqm-contactSAN+RWSE
Hits@1: 0.1312±0.0016
Hits@10: 0.8550±0.0024
Hits@3: 0.4030±0.0008
MRR: 0.3341±0.0006
link-prediction-on-pcqm-contactGatedGCN+RWSE
Hits@1: 0.1288±0.0013
Hits@10: 0.8517±0.0005
Hits@3: 0.3808±0.0006
MRR: 0.3242±0.0008
link-prediction-on-pcqm-contactGatedGCN
Hits@1: 0.1279±0.0018
Hits@10: 0.8433±0.0011
Hits@3: 0.3783±0.0004
MRR: 0.3218±0.0011
link-prediction-on-pcqm-contactGINE
Hits@1: 0.1337±0.0013
Hits@10: 0.8147±0.0062
Hits@3: 0.3642±0.0043
MRR: 0.3180±0.0027
node-classification-on-coco-spGatedGCN
macro F1: 0.2641±0.0045
node-classification-on-coco-spGatedGCN+LapPE
macro F1: 0.2574±0.0034
node-classification-on-coco-spGCN
macro F1: 0.0841±0.0010
node-classification-on-coco-spGINE
macro F1: 0.1339±0.0044
node-classification-on-coco-spSAN+RWSE
macro F1: 0.2434±0.0156
node-classification-on-coco-spTransformer+LapPE
macro F1: 0.2618±0.0031
node-classification-on-coco-spSAN+LapPE
macro F1: 0.2592±0.0158
node-classification-on-pascalvoc-sp-1GatedGCN
macro F1: 0.2873±0.0219
node-classification-on-pascalvoc-sp-1SAN+RWSE
macro F1: 0.3216±0.0027
node-classification-on-pascalvoc-sp-1GCN
macro F1: 0.1268±0.0060
node-classification-on-pascalvoc-sp-1Transformer+LapPE
macro F1: 0.2694±0.0098
node-classification-on-pascalvoc-sp-1GINE
macro F1: 0.1265±0.0076
node-classification-on-pascalvoc-sp-1SAN+LapPE
macro F1: 0.3230±0.0039
node-classification-on-pascalvoc-sp-1GatedGCN+LapPE
macro F1: 0.2860±0.0085

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Long Range Graph Benchmark | Papers | HyperAI