HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

BEATs: Audio Pre-Training with Acoustic Tokenizers

Sanyuan Chen Yu Wu Chengyi Wang Shujie Liu Daniel Tompkins Zhuo Chen Furu Wei

BEATs: Audio Pre-Training with Acoustic Tokenizers

Abstract

The massive growth of self-supervised learning (SSL) has been witnessed in language, vision, speech, and audio domains over the past few years. While discrete label prediction is widely adopted for other modalities, the state-of-the-art audio SSL models still employ reconstruction loss for pre-training. Compared with reconstruction loss, semantic-rich discrete label prediction encourages the SSL model to abstract the high-level audio semantics and discard the redundant details as in human perception. However, a semantic-rich acoustic tokenizer for general audio pre-training is usually not straightforward to obtain, due to the continuous property of audio and unavailable phoneme sequences like speech. To tackle this challenge, we propose BEATs, an iterative audio pre-training framework to learn Bidirectional Encoder representation from Audio Transformers, where an acoustic tokenizer and an audio SSL model are optimized by iterations. In the first iteration, we use random projection as the acoustic tokenizer to train an audio SSL model in a mask and label prediction manner. Then, we train an acoustic tokenizer for the next iteration by distilling the semantic knowledge from the pre-trained or fine-tuned audio SSL model. The iteration is repeated with the hope of mutual promotion of the acoustic tokenizer and audio SSL model. The experimental results demonstrate our acoustic tokenizers can generate discrete labels with rich audio semantics and our audio SSL models achieve state-of-the-art results across various audio classification benchmarks, even outperforming previous models that use more training data and model parameters significantly. Specifically, we set a new state-of-the-art mAP 50.6% on AudioSet-2M for audio-only models without using any external data, and 98.1% accuracy on ESC-50. The code and pre-trained models are available at https://aka.ms/beats.

Code Repositories

Yui010206/CREMA
pytorch
Mentioned in GitHub
qingyuliu0521/icsd
pytorch
Mentioned in GitHub
phuriches/genrepasd
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
audio-classification-on-audiosetBEATs (Audio-only, Single)
Test mAP: 0.486
audio-classification-on-audiosetBEATs (Audio-only, Ensemble)
Test mAP: 0.506
audio-classification-on-balanced-audio-setBEATs
Mean AP: 38.9
audio-classification-on-esc-50BEATs
Accuracy (5-fold): 98.1
PRE-TRAINING DATASET: AudioSet
Top-1 Accuracy: 98.1

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
BEATs: Audio Pre-Training with Acoustic Tokenizers | Papers | HyperAI