HyperAIHyperAI

Command Palette

Search for a command to run...

4 months ago

Scaling Laws for Optimal Data Mixtures

Mustafa Shukor Louis Bethune Dan Busbridge David Grangier Enrico Fini Alaaeldin El-Nouby Pierre Ablin

Scaling Laws for Optimal Data Mixtures

Abstract

Large foundation models are typically trained on data from multiple domains, with the data mixture--the proportion of each domain used--playing a critical role in model performance. The standard approach to selecting this mixture relies on trial and error, which becomes impractical for large-scale pretraining. We propose a systematic method to determine the optimal data mixture for any target domain using scaling laws. Our approach accurately predicts the loss of a model of size $N$ trained with $D$ tokens and a specific domain weight vector $h$. We validate the universality of these scaling laws by demonstrating their predictive power in three distinct and large-scale settings: large language model (LLM), native multimodal model (NMM), and large vision models (LVM) pretraining. We further show that these scaling laws can extrapolate to new data mixtures and across scales: their parameters can be accurately estimated using a few small-scale training runs, and used to estimate the performance at larger scales and unseen domain weights. The scaling laws allow to derive the optimal domain weights for any target domain under a given training budget ($N$,$D$), providing a principled alternative to costly trial-and-error methods.

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Scaling Laws for Optimal Data Mixtures | Papers | HyperAI