HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

PyVeritas: On Verifying Python via LLM-Based Transpilation and Bounded Model Checking for C

Pedro Orvalho Marta Kwiatkowska

PyVeritas: On Verifying Python via LLM-Based Transpilation and Bounded Model Checking for C

Abstract

Python has become the dominant language for general-purpose programming, yet it lacks robust tools for formal verification. In contrast, programmers working in languages such as C benefit from mature model checkers, for example CBMC, which enable exhaustive symbolic reasoning and fault localisation. The inherent complexity of Python, coupled with the verbosity and low-level nature of existing transpilers (e.g., Cython), have historically limited the applicability of formal verification to Python programs. In this paper, we propose PyVeritas, a novel framework that leverages Large Language Models (LLMs) for high-level transpilation from Python to C, followed by bounded model checking and MaxSAT-based fault localisation in the generated C code. PyVeritas enables verification and bug localisation for Python code using existing model checking tools for C. Our empirical evaluation on two Python benchmarks demonstrates that LLM-based transpilation can achieve a high degree of accuracy, up to 80--90% for some LLMs, enabling effective development environment that supports assertion-based verification and interpretable fault diagnosis for small yet non-trivial Python programs.

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
PyVeritas: On Verifying Python via LLM-Based Transpilation and Bounded Model Checking for C | Papers | HyperAI