HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

CryptoScope: Utilizing Large Language Models for Automated Cryptographic Logic Vulnerability Detection

Zhihao Li Zimo Ji Tao Zheng Hao Ren Xiao Lan

CryptoScope: Utilizing Large Language Models for Automated Cryptographic Logic Vulnerability Detection

Abstract

Cryptographic algorithms are fundamental to modern security, yet their implementations frequently harbor subtle logic flaws that are hard to detect. We introduce CryptoScope, a novel framework for automated cryptographic vulnerability detection powered by Large Language Models (LLMs). CryptoScope combines Chain-of-Thought (CoT) prompting with Retrieval-Augmented Generation (RAG), guided by a curated cryptographic knowledge base containing over 12,000 entries. We evaluate CryptoScope on LLM-CLVA, a benchmark of 92 cases primarily derived from real-world CVE vulnerabilities, complemented by cryptographic challenges from major Capture The Flag (CTF) competitions and synthetic examples across 11 programming languages. CryptoScope consistently improves performance over strong LLM baselines, boosting DeepSeek-V3 by 11.62%, GPT-4o-mini by 20.28%, and GLM-4-Flash by 28.69%. Additionally, it identifies 9 previously undisclosed flaws in widely used open-source cryptographic projects.

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
CryptoScope: Utilizing Large Language Models for Automated Cryptographic Logic Vulnerability Detection | Papers | HyperAI