HyperAIHyperAI

Command Palette

Search for a command to run...

2 months ago

LAVa: Layer-wise KV Cache Eviction with Dynamic Budget Allocation

Yiqun Shen Song Yuan Zhengze Zhang Xiaoliang Wang Daxin Jiang Nguyen Cam-Tu

LAVa: Layer-wise KV Cache Eviction with Dynamic Budget Allocation

Abstract

KV Cache is commonly used to accelerate LLM inference with long contexts, yet its high memory demand drives the need for cache compression. Existing compression methods, however, are largely heuristic and lack dynamic budget allocation. To address this limitation, we introduce a unified framework for cache compression by minimizing information loss in Transformer residual streams. Building on it, we analyze the layer attention output loss and derive a new metric to compare cache entries across heads, enabling layer-wise compression with dynamic head budgets. Additionally, by contrasting cross-layer information, we also achieve dynamic layer budgets. LAVa is the first unified strategy for cache eviction and dynamic budget allocation that, unlike prior methods, does not rely on training or the combination of multiple strategies. Experiments with benchmarks (LongBench, Needle-In-A-Haystack, Ruler, and InfiniteBench) demonstrate its superiority. Moreover, our experiments reveal a new insight: dynamic layer budgets are crucial for generation tasks (e.g., code completion), while dynamic head budgets play a key role in extraction tasks (e.g., extractive QA). As a fully dynamic compression method, LAVa consistently maintains top performance across task types. Our code is available at this https URL.

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
LAVa: Layer-wise KV Cache Eviction with Dynamic Budget Allocation | Papers | HyperAI