HyperAIHyperAI

Command Palette

Search for a command to run...

a month ago

WAVECLIP: Wavelet Tokenization for Adaptive-Resolution CLIP

Moshe Kimhi Erez Koifman Ehud Rivlin Eli Schwartz Chaim Baskin

WAVECLIP: Wavelet Tokenization for Adaptive-Resolution CLIP

Abstract

We introduce WAVECLIP, a single unified model for adaptive resolution inference in CLIP, enabled by wavelet-based tokenization. WAVECLIP replaces standard patch embeddings with a multi-level wavelet decomposition, enabling the model to process images coarse to fine while naturally supporting multiple resolutions within the same model. At inference time, the model begins with low resolution tokens and refines only when needed, using key-value caching and causal cross-level attention to reuse computation, effectively introducing to the model only new information when needed. We evaluate WAVECLIP in zero-shot classification, demonstrating that a simple confidence-based gating mechanism enables adaptive early exits. This allows users to dynamically choose a compute-accuracy trade-off using a single deployed model. Our approach requires only lightweight distillation from a frozen CLIP teacher and achieves competitive accuracy with significant computational savings.

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
WAVECLIP: Wavelet Tokenization for Adaptive-Resolution CLIP | Papers | HyperAI