Command Palette
Search for a command to run...
{ Ling Shao Jianbing Shen Ming-Ming Cheng Guolei Sun Ge-Peng Ji Deng-Ping Fan}

Abstract
We present a comprehensive study on a new task named camouflaged object detection (COD), which aims to identify objects that are "seamlessly" embedded in their surroundings. The high intrinsic similarities between the target object and the background make COD far more challenging than the traditional object detection task. To address this issue, we elaborately collect a novel dataset, called COD10K, which comprises 10,000 images covering camouflaged objects in various natural scenes, over 78 object categories. All the images are densely annotated with category, bounding-box, object-/instance-level, and matting-level labels. This dataset could serve as a catalyst for progressing many vision tasks, e.g., localization, segmentation, and alpha-matting, etc. In addition, we develop a simple but effective framework for COD, termed Search Identification Network (SINet). Without any bells and whistles, SINet outperforms various state-of-the-art object detection baselines on all datasets tested, making it a robust, general framework that can help facilitate future research in COD. Finally, we conduct a large-scale COD study, evaluating 13 cutting-edge models, providing some interesting findings, and showing several potential applications. Our research offers the community an opportunity to explore more in this new field. The code will be available at https://github.com/DengPingFan/SINet/.
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| camouflaged-object-segmentation-on-camo | SINet | MAE: 0.100 S-Measure: 0.751 Weighted F-Measure: 0.606 |
| camouflaged-object-segmentation-on-cod | SINet | MAE: 0.092 S-Measure: 0.685 Weighted F-Measure: 0.352 |
| camouflaged-object-segmentation-on-pcod-1200 | SINet-V1 | S-Measure: 0.862 |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.