HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Knowledge Graph Embedding via Graph Attenuated Attention Networks

{Rui Wang Bicheng Li Shengwei Hu Min Zhang Wenqian Du}

Abstract

Knowledge graphs contain a wealth of real-world knowledge that can provide strong support for artificial intelligence applications. Much progress has been made in knowledge graph completion, state-of-the-art models are based on graph convolutional neural networks. These models automatically extract features, in combination with the features of the graph model, to generate feature embeddings with a strong expressive ability. However, these methods assign the same weights on the relation path in the knowledge graph and ignore the rich information presented in neighbor nodes, which result in incomplete mining of triple features. To this end, we propose Graph Attenuated Attention networks(GAATs), a novel representation method, which integrates an attenuated attention mechanism to assign different weight in different relation path and acquire the information from the neighborhoods. As a result, entities and relations can be learned in any neighbors. Our empirical research provides insight into the effectiveness of the attenuated attention-based models, and we show significant improvement compared to the state-of-the-art methods on two benchmark datasets WN18RR and FB15k-237.

Benchmarks

BenchmarkMethodologyMetrics
link-prediction-on-wn18rrGAAT
Hits@1: 0.424
Hits@10: 0.604
Hits@3: 0.525
MR: 1270
MRR: 0.467

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Knowledge Graph Embedding via Graph Attenuated Attention Networks | Papers | HyperAI