HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Mean-Variance Loss for Deep Age Estimation From a Face

{Xilin Chen Hongyu Pan Shiguang Shan Hu Han}

Mean-Variance Loss for Deep Age Estimation From a Face

Abstract

Age estimation has broad application prospects of many fields, such as video surveillance, social networking, and human-computer interaction. However, many of the published age estimation approaches simply treat the age estimation as an exact age regression problem, and thus did not leverage a distribution's robustness in representing labels with ambiguity such as ages. In this paper, we propose a new loss function, called mean-variance loss, for robust age estimation via distribution learning. Specifically, the mean-variance loss consists of a mean loss, which penalizes difference between the mean of the estimated age distribution and the ground-truth age, and a variance loss, which penalizes the variance of the estimated age distribution to ensure a concentrated distribution. The proposed mean-variance loss and softmax loss are embedded jointly into Convolutional Neural Networks (CNNs) for age estimation, and the network weights are optimized via stochastic gradient descent (SGD) in an end-to-end learning way. Experimental results on a number of challenging face aging databases (FG-NET, MORPH Album II, and CLAP2016) show that the proposed approach outperforms the state-of-the-art methods by a large margin using a single model.

Benchmarks

BenchmarkMethodologyMetrics
age-estimation-on-chalearn-2016Mean-Variance
e-error: 0.2867

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Mean-Variance Loss for Deep Age Estimation From a Face | Papers | HyperAI