HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Relative Uncertainty Learning for Facial Expression Recognition

{Weihong Deng Chengrui Wang Yuhang Zhang}

Relative Uncertainty Learning for Facial Expression Recognition

Abstract

In facial expression recognition (FER), the uncertainties introduced by inherent noises like ambiguous facial expressions and inconsistent labels raise concerns about the credibility of recognition results. To quantify these uncertainties and achieve good performance under noisy data, we regard uncertainty as a relative concept and propose an innovative uncertainty learning method called Relative Uncertainty Learning (RUL). Rather than assuming Gaussian uncertainty distributions for all datasets, RUL builds an extra branch to learn uncertainty from the relative difficulty of samples by feature mixup. Specifically, we use uncertainties as weights to mix facial features and design an add-up loss to encourage uncertainty learning. It is easy to implement and adds little or no extra computation overhead. Extensive experiments show that RUL outperforms state-of-the-art FER uncertainty learning methods in both real-world and synthetic noisy FER datasets. Besides, RUL also works well on other datasets such as CIFAR and Tiny ImageNet. The code is available at https://github.com/zyh-uaiaaaa/Relative-Uncertainty-Learning.

Benchmarks

BenchmarkMethodologyMetrics
facial-expression-recognition-on-raf-dbRUL (ResNet-18)
Overall Accuracy: 88.98

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Relative Uncertainty Learning for Facial Expression Recognition | Papers | HyperAI