Command Palette
Search for a command to run...
PointNet++:度量空间中点集的深度分层特征学习
PointNet++:度量空间中点集的深度分层特征学习
Qi Charles R. Yi Li Su Hao Guibas Leonidas J.
摘要
此前很少有研究探讨点集上的深度学习问题。Qi等人提出的PointNet是该领域的开创性工作。然而,由于其设计限制,PointNet无法捕捉由度量空间所诱导的局部结构,从而限制了其识别细粒度模式的能力,以及在复杂场景中的泛化性能。在本工作中,我们提出一种分层神经网络,通过在输入点集的嵌套划分上递归应用PointNet,实现对点集的多层次建模。通过利用度量空间中的距离信息,我们的网络能够逐步学习具有越来越广泛上下文感知能力的局部特征。此外,我们观察到,点集通常以不同密度进行采样,而基于均匀密度训练的网络在面对非均匀采样时性能显著下降。为此,我们设计了新型的集合学习层,可自适应地融合多尺度特征。实验表明,我们提出的网络——PointNet++,能够高效且稳健地学习深层点集特征。尤其在具有挑战性的三维点云基准测试中,其性能显著优于现有最先进方法。